Gene Expression Analysis of Mevalonate Kinase Deficiency Affected Children Identifies Molecular Signatures Related to Hematopoiesis
Simona Pisanti,
Marianna Citro,
Mario Abate,
Mariella Caputo and
Rosanna Martinelli
Additional contact information
Simona Pisanti: Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Via Salvatore Allende, 84081 Baronissi (SA), Italy
Marianna Citro: Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Via Salvatore Allende, 84081 Baronissi (SA), Italy
Mario Abate: Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Via Salvatore Allende, 84081 Baronissi (SA), Italy
Mariella Caputo: Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Via Salvatore Allende, 84081 Baronissi (SA), Italy
Rosanna Martinelli: Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Via Salvatore Allende, 84081 Baronissi (SA), Italy
IJERPH, 2021, vol. 18, issue 3, 1-15
Abstract:
Mevalonate kinase deficiency (MKD) is a rare autoinflammatory genetic disorder characterized by recurrent fever attacks and systemic inflammation with potentially severe complications. Although it is recognized that the lack of protein prenylation consequent to mevalonate pathway blockade drives IL1? hypersecretion, and hence autoinflammation, MKD pathogenesis and the molecular mechanisms underlaying most of its clinical manifestations are still largely unknown. In this study, we performed a comprehensive bioinformatic analysis of a microarray dataset of MKD patients, using gene ontology and Ingenuity Pathway Analysis (IPA) tools, in order to identify the most significant differentially expressed genes and infer their predicted relationships into biological processes, pathways, and networks. We found that hematopoiesis linked biological functions and pathways are predominant in the gene ontology of differentially expressed genes in MKD, in line with the observed clinical feature of anemia. We also provided novel information about the molecular mechanisms at the basis of the hematological abnormalities observed, that are linked to the chronic inflammation and to defective prenylation. Considering the broad and unspecific spectrum of MKD clinical manifestations and the difficulty in its diagnosis, a better understanding of MKD molecular bases could be translated to the clinical level to facilitate diagnosis, and improve management and therapy.
Keywords: mevalonate kinase deficiency; anemia; hematopoiesis; stress erythropoiesis (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/18/3/1170/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/3/1170/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:3:p:1170-:d:489032
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().