EconPapers    
Economics at your fingertips  
 

Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders

Akylbek Sydykov, Argen Mamazhakypov, Abdirashit Maripov, Djuro Kosanovic, Norbert Weissmann, Hossein Ardeschir Ghofrani, Akpay Sh. Sarybaev and Ralph Theo Schermuly
Additional contact information
Akylbek Sydykov: Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany
Argen Mamazhakypov: Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany
Abdirashit Maripov: National Center of Cardiology and Internal Medicine, Department of Mountain and Sleep Medicine and Pulmonary Hypertension, Bishkek 720040, Kyrgyzstan
Djuro Kosanovic: Department of Pulmonology, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
Norbert Weissmann: Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany
Hossein Ardeschir Ghofrani: Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany
Akpay Sh. Sarybaev: National Center of Cardiology and Internal Medicine, Department of Mountain and Sleep Medicine and Pulmonary Hypertension, Bishkek 720040, Kyrgyzstan
Ralph Theo Schermuly: Member of the German Center for Lung Research (DZL), Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany

IJERPH, 2021, vol. 18, issue 4, 1-33

Abstract: Alveolar hypoxia is the most prominent feature of high altitude environment with well-known consequences for the cardio-pulmonary system, including development of pulmonary hypertension. Pulmonary hypertension due to an exaggerated hypoxic pulmonary vasoconstriction contributes to high altitude pulmonary edema (HAPE), a life-threatening disorder, occurring at high altitudes in non-acclimatized healthy individuals. Despite a strong physiologic rationale for using vasodilators for prevention and treatment of HAPE, no systematic studies of their efficacy have been conducted to date. Calcium-channel blockers are currently recommended for drug prophylaxis in high-risk individuals with a clear history of recurrent HAPE based on the extensive clinical experience with nifedipine in HAPE prevention in susceptible individuals. Chronic exposure to hypoxia induces pulmonary vascular remodeling and development of pulmonary hypertension, which places an increased pressure load on the right ventricle leading to right heart failure. Further, pulmonary hypertension along with excessive erythrocytosis may complicate chronic mountain sickness, another high altitude maladaptation disorder. Importantly, other causes than hypoxia may potentially underlie and/or contribute to pulmonary hypertension at high altitude, such as chronic heart and lung diseases, thrombotic or embolic diseases. Extensive clinical experience with drugs in patients with pulmonary arterial hypertension suggests their potential for treatment of high altitude pulmonary hypertension. Small studies have demonstrated their efficacy in reducing pulmonary artery pressure in high altitude residents. However, no drugs have been approved to date for the therapy of chronic high altitude pulmonary hypertension. This work provides a literature review on the role of pulmonary hypertension in the pathogenesis of acute and chronic high altitude maladaptation disorders and summarizes current knowledge regarding potential treatment options.

Keywords: high altitude; hypoxic pulmonary vasoconstriction; high altitude pulmonary edema; pulmonary hypertension; chronic mountain sickness (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/4/1692/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/4/1692/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:4:p:1692-:d:496971

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1692-:d:496971