EconPapers    
Economics at your fingertips  
 

Menopause, Ultraviolet Exposure, and Low Water Intake Potentially Interact with the Genetic Variants Related to Collagen Metabolism Involved in Skin Wrinkle Risk in Middle-Aged Women

Sunmin Park, Suna Kang and Woo Jae Lee
Additional contact information
Sunmin Park: Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, Baebang-Yup, Asan-Si, ChungNam-Do 336-795, Korea
Suna Kang: Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, Baebang-Yup, Asan-Si, ChungNam-Do 336-795, Korea
Woo Jae Lee: City Dermatologic Clinic, Daejeon 34141, Korea

IJERPH, 2021, vol. 18, issue 4, 1-12

Abstract: Genetic and environmental factors influence wrinkle development. We evaluated the polygenetic risk score (PRS) by pooling the selected single nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) for wrinkles and the interaction of PRS with lifestyle factors in middle-aged women. Under the supervision of a dermatologist, the skin status of 128 women aged over 40 years old was evaluated with Mark-Vu, a skin diagnosis system. PRS was generated from the selected SNPs for wrinkle risk from the genome-wide association study. Lifestyle interactions with PRS were also evaluated for wrinkle risk. Participants in the wrinkled group were more likely to be post-menopausal, eat less fruit, take fewer vitamin supplements, exercise less, and be more tired after awakening in the morning than those in the less-wrinkled group. The PRS included EGFR _rs1861003, MMP16 _rs6469206, and COL17A1 _rs805698. Subjects with high PRS had a wrinkle risk 15.39-fold higher than those with low PRS after adjusting for covariates, and they had a 10.64-fold higher risk of a large skin pore size. Menopause, UV exposure, and water intake interacted with PRS for wrinkle risk: the participants with high PRS had a much higher incidence of wrinkle risk than those with low PRS, only among post-menopausal women and those with UV exposure. Only with low water intake did the participants with medium PRS have increased wrinkle risk. In conclusion, women aged >40 years with high PRS-related collagen metabolism may possibly avoid wrinkle risk by avoiding UV exposure by applying sunscreen, maintaining sufficient water intake, and managing estrogen deficiency.

Keywords: genetic variants; wrinkle; EGFR; MMP16; COL17A1; UV exposure (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/4/2044/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/4/2044/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:4:p:2044-:d:502249

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:2044-:d:502249