EconPapers    
Economics at your fingertips  
 

Responses of Runoff and Soil Loss to Rainfall Regimes and Soil Conservation Measures on Cultivated Slopes in a Hilly Region of Northern China

Haiyan Fang
Additional contact information
Haiyan Fang: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

IJERPH, 2021, vol. 18, issue 4, 1-16

Abstract: Cultivated land plays an important role in water and soil loss in earthy/rocky mountainous regions in northern China, however, its response to soil conservation measures and rainfall characteristics are still not fully understood. In the present study, 85 erosive rainfall events in 2011–2019 were grouped into three types, and the responses of runoff and soil loss to soil conservation measures and rainfall regimes on five cultivated plots with different slopes in the upstream catchment of the Miyun Reservoir were evaluated. Results found that mean event runoff depths and soil loss rates on the five plots ranged from 0.03 mm to 7.05 mm and from 0.37 t km ?2 to 300.51 t km ?2 respectively, depending on rainfall regimes, soil conservation measures, and slope gradients. The high frequency (i.e., 72.94%) rainfall regime A with a short rainfall duration (RD), low rainfall amount (P), and high mean rainfall intensity (I m ) yielded a lower runoff depth and higher soil loss rate. Rainfall regime B with a longer RD, and a higher P and I m , however, produced higher a runoff depth and lower soil loss rate. Terraced plots had the highest runoff and soil loss reduction efficiencies of over 96.03%. Contour tillage had comparable sediment reduction efficiency to that of the terraced plots on gentle slopes (gradient less than 11.0%), while its runoff reduction efficiency was less than 13.11%. This study implies that in the Miyun Reservoir catchment and similar regions in the world, contour tillage should be promoted on gentle slopes, and the construction of terraced plots should be given ample consideration as they could greatly reduce water quantity and cause water shortages in downstream catchments.

Keywords: cultivated land; rainfall regime; soil conservation measure; reduction efficiency; northern China (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/4/2102/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/4/2102/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:4:p:2102-:d:503321

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:2102-:d:503321