Optimized Neural Network Based on Genetic Algorithm to Construct Hand-Foot-and-Mouth Disease Prediction and Early-Warning Model
Xialv Lin,
Xiaofeng Wang,
Yuhan Wang,
Xuejie Du,
Lizhu Jin,
Ming Wan,
Hui Ge and
Xu Yang
Additional contact information
Xialv Lin: School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Xiaofeng Wang: Chinese Center for Disease Control and Prevention, Beijing 102206, China
Yuhan Wang: School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Xuejie Du: Chinese Center for Disease Control and Prevention, Beijing 102206, China
Lizhu Jin: Chinese Center for Disease Control and Prevention, Beijing 102206, China
Ming Wan: Chinese Center for Disease Control and Prevention, Beijing 102206, China
Hui Ge: Chinese Center for Disease Control and Prevention, Beijing 102206, China
Xu Yang: School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
IJERPH, 2021, vol. 18, issue 6, 1-25
Abstract:
Accompanied by the rapid economic and social development, there is a phenomenon of the crazy spread of many infectious diseases. It has brought the rapid growth of the number of people infected with hand-foot-and-mouth disease (HFMD), and children, especially infants and young children’s health is at great risk. So it is very important to predict the number of HFMD infections and realize the regional early-warning of HFMD based on big data. However, in the current field of infectious diseases, the research on the prevalence of HFMD mainly predicts the number of future cases based on the number of historical cases in various places, and the influence of many related factors that affect the prevalence of HFMD is ignored. The current early-warning research of HFMD mainly uses direct case report, which uses statistical methods in time and space to have early-warnings of outbreaks separately. It leads to a high error rate and low confidence in the early-warning results. This paper uses machine learning methods to establish a HFMD epidemic prediction model and explore constructing a variety of early-warning models. By comparison of experimental results, we finally verify that the HFMD prediction algorithm proposed in this paper has higher accuracy. At the same time, the early-warning algorithm based on the comparison of threshold has good results.
Keywords: hand-foot-and-mouth disease; early-warning model; neural network; genetic algorithm (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1660-4601/18/6/2959/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/6/2959/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:6:p:2959-:d:516616
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().