EconPapers    
Economics at your fingertips  
 

Bio-Mercury Remediation Suitability Index: A Novel Proposal That Compiles the PGPR Features of Bacterial Strains and Its Potential Use in Phytoremediation

Marina Robas, Pedro A. Jiménez, Daniel González and Agustín Probanza
Additional contact information
Marina Robas: Department of Pharmaceutical Science and Health, Montepríncipe Campus, CEU San Pablo University, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Spain
Pedro A. Jiménez: Department of Pharmaceutical Science and Health, Montepríncipe Campus, CEU San Pablo University, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Spain
Daniel González: Department of Pharmaceutical Science and Health, Montepríncipe Campus, CEU San Pablo University, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Spain
Agustín Probanza: Department of Pharmaceutical Science and Health, Montepríncipe Campus, CEU San Pablo University, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Spain

IJERPH, 2021, vol. 18, issue 8, 1-14

Abstract: Soil pollution from heavy metals, especially mercury, is an environmental problem for human health. Biological approaches offer interesting tools, which necessarily involve the selection of organisms capable of transforming the environment via bioremediation. To evaluate the potential use of microorganisms in phytorhizoremediation, bacterial strains were isolated from rhizospheric and bulk soil under conditions of chronic natural mercury, which were identified and characterized by studying the following: (i) their plant growth promoting rhizobacteria (PGPR) activities; and (ii) their maximum bactericide concentration of mercury. Information regarding auxin production, phosphate solubilization, siderophore synthesis and 1-aminocyclopropane-1-carboxylic acid deaminase (ACCd) capacity of the isolates was compiled in order to select the strains that fit potential biotechnological use. To achieve this objective, the present work proposes the Bio-Mercury Remediation Suitability Index (BMR-SI), which reflects the integral behavior of the strains for heavy metal polluted soil bioremediation. Only those strains that rigorously fulfilled all of the established criteria were selected for further assays.

Keywords: heavy metal pollution; bioremediation; PGPR; BMR-SI (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/8/4213/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/8/4213/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:8:p:4213-:d:537122

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:4213-:d:537122