The Function of Color and Structure Based on EEG Features in Landscape Recognition
Yuting Wang,
Shujian Wang and
Ming Xu
Additional contact information
Yuting Wang: Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China
Shujian Wang: Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China
Ming Xu: Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China
IJERPH, 2021, vol. 18, issue 9, 1-14
Abstract:
Both color and structure make important contributions to human visual perception, as well as the evaluation of landscape quality and landscape aesthetics. The EEG equipment liveamp32 was used to record the EEG signals of humans when viewing landscape images, structure images with filtered color, and color images with a filtered structure. The results show that the SVM classifier was the most suitable classifier for landscape classification based on EEG features. The classification accuracy of the landscape picture recognition was up to 98.3% when using beta waves, while the accuracy of the color recognition was 97.5%, and that of the structure recognition was 93.9% when using gamma waves. Secondly, color and structure played a major role in determining the alpha and gamma wave responses, respectively, for all the landscape types, including forest, desert, and water. Furthermore, structure only played a decisive role in forest, while color played a major role in desert and water when using beta waves. Lastly, statistically significant differences between landscape groups and scenario groups with regard to alpha, beta, and gamma rhythms in brain waves were confirmed. The reasonable usage and layout of structure and color will have a very important guiding value for landscape aesthetics in future landscape design and landscape planning.
Keywords: color; structure; landscape recognition; electroencephalography (EEG) (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1660-4601/18/9/4866/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/9/4866/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:9:p:4866-:d:548301
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().