EconPapers    
Economics at your fingertips  
 

The Comprehensive Machine Learning Analytics for Heart Failure

Chao-Yu Guo, Min-Yang Wu and Hao-Min Cheng
Additional contact information
Chao-Yu Guo: Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
Min-Yang Wu: Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
Hao-Min Cheng: Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan

IJERPH, 2021, vol. 18, issue 9, 1-17

Abstract: Background : Early detection of heart failure is the basis for better medical treatment and prognosis. Over the last decades, both prevalence and incidence rates of heart failure have increased worldwide, resulting in a significant global public health issue. However, an early diagnosis is not an easy task because symptoms of heart failure are usually non-specific. Therefore, this study aims to develop a risk prediction model for incident heart failure through a machine learning-based predictive model. Although African Americans have a higher risk of incident heart failure among all populations, few studies have developed a heart failure risk prediction model for African Americans. Methods : This research implemented the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression, support vector machine, random forest, and Extreme Gradient Boosting (XGBoost) to establish the Jackson Heart Study’s predictive model. In the analysis of real data, missing data are problematic when building a predictive model. Here, we evaluate predictors’ inclusion with various missing rates and different missing imputation strategies to discover the optimal analytics. Results : According to hundreds of models that we examined, the best predictive model was the XGBoost that included variables with a missing rate of less than 30 percent, and we imputed missing values by non-parametric random forest imputation. The optimal XGBoost machine demonstrated an Area Under Curve (AUC) of 0.8409 to predict heart failure for the Jackson Heart Study. Conclusion : This research identifies variations of diabetes medication as the most crucial risk factor for heart failure compared to the complete cases approach that failed to discover this phenomenon.

Keywords: heart failure; machine learning; prediction model; LASSO logistic regression; support vector machine; random forest; XGBoost (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/18/9/4943/pdf (application/pdf)
https://www.mdpi.com/1660-4601/18/9/4943/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:18:y:2021:i:9:p:4943-:d:549537

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:18:y:2021:i:9:p:4943-:d:549537