Focal Mechanism and Source Parameters Analysis of Mining-Induced Earthquakes Based on Relative Moment Tensor Inversion
Anye Cao,
Yaoqi Liu,
Fan Chen,
Qi Hao,
Xu Yang,
Changbin Wang and
Xianxi Bai
Additional contact information
Anye Cao: School of Mines, China University of Mining & Technology, Xuzhou 221116, China
Yaoqi Liu: School of Mines, China University of Mining & Technology, Xuzhou 221116, China
Fan Chen: State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
Qi Hao: School of Mines, China University of Mining & Technology, Xuzhou 221116, China
Xu Yang: School of Computer Science & Technology, China University of Mining & Technology, Xuzhou 221116, China
Changbin Wang: State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
Xianxi Bai: School of Mines, China University of Mining & Technology, Xuzhou 221116, China
IJERPH, 2022, vol. 19, issue 12, 1-23
Abstract:
Mining-induced earthquakes (MIEs) in underground coal mines have been a common phenomenon that easily triggers rock bursts, but the mechanism is not understood clearly. This research investigates the laws of focal mechanism and source parameters based on focal mechanism and source parameters analysis of MIEs in three frequent rock burst areas. The relative moment tensor inversion (MTI) method was introduced, and the way to construct the inversion matrix was modified. The minimum ray and source number conditions were calculated, and an optimized identification criterion for source rupture type was proposed. Results show that the geological structure, stress environment, and source horizon influence the focal mechanism. The tensile type sources can distribute in the roof and coal seam, while the shear types are primarily located in the coal seam. In the typical fold structure area, the difference in source rupture strength and stress adjustment between tensile and shear types is negligible, while the disturbance scale of tensile types is distinct. The shear types have higher apparent volume and seismic moment in the deep buried fault area but lower source energy. The apparent stress of the tensile types is higher than that of the shear types, representing that the stress concentration still exists in the roof after the MIEs, but the stress near the faults could be effectively released. In the high-stress roadway pillar area, the primary fracture of the coal pillar easily produces a continuous shear rupture along the dominant stress direction under the extrusion of the roof and floor. The source parameters (except apparent stress) of shear types are higher than tensile types and have higher dynamic risk. The results contribute to expanding the understanding of rock burst mechanisms and guide MIEs’ prevention.
Keywords: mining-induced earthquakes; relative moment tensor inversion; focal mechanism; source parameters; response laws (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/12/7352/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/12/7352/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:12:p:7352-:d:839605
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().