An Improved Genetic Algorithm for Location Allocation Problem with Grey Theory in Public Health Emergencies
Shaoren Wang,
Yenchun Jim Wu () and
Ruiting Li
Additional contact information
Shaoren Wang: Business School, Huaqiao University, Quanzhou 362021, China
Yenchun Jim Wu: MBA Program in Southeast Asia, National Taipei University of Education, Taipei City 10671, Taiwan
Ruiting Li: Business School, Huaqiao University, Quanzhou 362021, China
IJERPH, 2022, vol. 19, issue 15, 1-18
Abstract:
The demand for emergency medical facilities (EMFs) has witnessed an explosive growth recently due to the COVID-19 pandemic and the rapid spread of the virus. To expedite the location of EMFs and the allocation of patients to these facilities at times of disaster, a location-allocation problem (LAP) model that can help EMFs cope with major public health emergencies was proposed in this study. Given the influence of the number of COVID-19-infected persons on the demand for EMFs, a grey forecasting model was also utilized to predict the accumulative COVID-19 cases during the pandemic and to calculate the demand for EMFs. A serial-number-coded genetic algorithm (SNCGA) was proposed, and dynamic variation was used to accelerate the convergence. This algorithm was programmed using MATLAB, and the emergency medical facility LAP (EMFLAP) model was solved using the simple (standard) genetic algorithm (SGA) and SNCGA. Results show that the EMFLAP plan based on SNCGA consumes 8.34% less time than that based on SGA, and the calculation time of SNCGA is 20.25% shorter than that of SGA. Therefore, SNCGA is proven convenient for processing the model constraint conditions, for naturally describing the available solutions to a problem, for improving the complexity of algorithms, and for reducing the total time consumed by EMFLAP plans. The proposed method can guide emergency management personnel in designing an EMFLAP decision scheme.
Keywords: emergency medical facility location-allocation problem (EMFLAP); genetic algorithm; public health emergency; emergency logistics; grey theory (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/15/9752/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/15/9752/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:15:p:9752-:d:882837
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().