Agent Simulation Model of COVID-19 Epidemic Agent-Based on GIS: A Case Study of Huangpu District, Shanghai
Tao Dong,
Wen Dong and
Quanli Xu
Additional contact information
Tao Dong: School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China
Wen Dong: GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming 650500, China
Quanli Xu: GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming 650500, China
IJERPH, 2022, vol. 19, issue 16, 1-19
Abstract:
Since the COVID-19 outbreak was detected and reported at the end of 2019, the pandemic continues worldwide, with public health authorities and the general public in each country struggling to balance safety and normal travel activities. However, the complex public health environment and the complexity of human behaviors, as well as the constant mutation of the COVID-19 virus, requires the development of theoretical and simulation tools to accurately model all segments of society. In this paper, an agent-based model is proposed, the model constructs the real geographical environment of Shanghai Huangpu District based on the building statistics data of Shanghai Huangpu District, and the real population data of Shanghai Huangpu District based on the data of China’s seventh Population census in 2020. After incorporating the detailed elements of COVID-19 transmission and the real data of WHO, the model forms various impact parameters. Finally, the model was validated according to the COVID-19 data reported by the official, and the model is applied to a hypothetical scenario. Shanghai is one of the places hardest hit by the current outbreak, Huangpu District is the “heart, window and name card” of Shanghai, and its importance to Shanghai is self-evident. so we used one-to-one population modeling to simulate the spread of COVID-19 in Huangpu District of Shanghai, In addition to the conventional functions of crowd movement, detection and treatment, the model also takes into account the burden of nucleic acid detection on the model caused by diseases similar to COVID-19, such as seasonal cold. The model validation results show that we have constructed a COVID-19 epidemic agent risk assessment system suitable for the individual epidemiological characteristics of COVID-19 in China, which can adjust and reflect on the existing COVID-19 epidemic intervention strategies and individual health behaviors. To provide scientific theoretical basis and information decision-making tools for effective prevention and control of COVID-19 and public health intervention in China.
Keywords: COVID-19; agent-based simulation model; population mobility; lockdown intervention (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/16/10242/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/16/10242/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:16:p:10242-:d:891106
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().