EconPapers    
Economics at your fingertips  
 

Changes in Sulfur Metabolism in Mouse Brains following Radon Inhalation

Norie Kanzaki (), Akihiro Sakoda, Takahiro Kataoka, Lue Sun, Hiroshi Tanaka, Iwao Ohtsu and Kiyonori Yamaoka
Additional contact information
Norie Kanzaki: Ningyo-Toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
Akihiro Sakoda: Ningyo-Toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
Takahiro Kataoka: Faculty of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama 700-8558, Japan
Lue Sun: Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
Hiroshi Tanaka: Ningyo-Toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
Iwao Ohtsu: Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
Kiyonori Yamaoka: Faculty of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama 700-8558, Japan

IJERPH, 2022, vol. 19, issue 17, 1-14

Abstract: Therapy using hot springs, including the high-level radioactive gas “radon”, is traditionally conducted as an alternative treatment for various diseases. Oxidative-stress-related diseases are inhibited by the enhancement of antioxidative functions following radon inhalation. We have reported that radon inhalation increased the level of anti-oxidants, such as glutathione (G-SH), in the brain and had a protective antioxidative effect against transient global cerebral ischemic injury. However, no studies have yet revealed the changes in G-SH associated substances after radon inhalation. In this study, we comprehensively analyzed several metabolites, focusing on G-SH. Mice were exposed to radon at concentrations of 200, 2000, or 20,000 Bq/m 3 for 1, 3, or 10 days. We detected 27 metabolites in the mouse brains. The result showed that the L-methionine levels increased, whereas the levels of urea, glutathione, and sulfite ion decreased under any condition. Although the ratio of G-SH to oxidized glutathione (GS-SG) decreased, glutathione monosulfide (G-S-SH) and cysteine monosulfide (Cys-S-SH) increased after radon inhalation. G-S-SH and Cys-S-SH can produce a biological defense against the imbalance of the redox state at very low-dose irradiation following radon inhalation because they are strong scavengers of reactive oxygen species. Additionally, we performed an overall assessment of high-dimensional data and showed some specific characteristics. We showed the changes in metabolites after radon inhalation using partial least squares-discriminant analysis and self-organizing maps. The results showed the health effects of radon, especially the state of sulfur-related metabolites in mouse brains under the exposure conditions for radon therapy.

Keywords: radon; sulfur metabolism; glutathione (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/19/17/10750/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/17/10750/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:17:p:10750-:d:900709

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10750-:d:900709