EconPapers    
Economics at your fingertips  
 

Comparison of Three Comorbidity Measures for Predicting In-Hospital Death through a Clinical Administrative Nacional Database

Iván Oterino-Moreira (), Susana Lorenzo-Martínez, Ángel López-Delgado and Montserrat Pérez-Encinas
Additional contact information
Iván Oterino-Moreira: Department of Pharmacy, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain
Susana Lorenzo-Martínez: Department of Quality and Patient Management, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain
Ángel López-Delgado: Department of Clinical Analysis, Hospital Clínico San Carlos, 28040 Madrid, Spain
Montserrat Pérez-Encinas: Department of Pharmacy, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain

IJERPH, 2022, vol. 19, issue 18, 1-13

Abstract: Background: Various authors have validated scales to measure comorbidity. However, the prognosis capacity variation according to the comorbidity measurement index used needs to be determined in order to identify which is the best predictor. Aims: To quantify the differences between the Charlson (CCI), Elixhauser (ECI) and van Walraven (WCI) comorbidity indices as prognostic factors for in-hospital mortality and to identify the best comorbidity measure predictor. Methods: A retrospective observational study that included all hospitalizations of patients over 18 years of age, discharged between 2017 and 2021 in the hospital, using the Minimum Basic Data Set (MBDS). We calculated CCI, ECI, WCI according to ICD-10 coding algorithms. The correlation and concordance between the three indices were evaluated by Spearman’s rho and Intraclass Correlation Coefficient (ICC), respectively. The logistic regression model for each index was built for predicting in-hospital mortality. Finally, we used the receiver operating characteristic (ROC) curve for comparing the performance of each index in predicting in-hospital mortality, and the Delong method was employed to test the statistical significance of differences. Results: We studied 79,425 admission episodes. The 54.29% were men. The median age was 72 years (interquartile range [IQR]: 56–80) and in-hospital mortality rate was 4.47%. The median of ECI was = 2 (IQR: 1–4), ICW was 4 (IQR: 0–12) and ICC was 1 (IQR: 0–3). The correlation was moderate: ECI vs. WCI rho = 0.645, p < 0.001; ECI vs. CCI rho = 0.721, p < 0.001; and CCI vs. WCI rho = 0.704, p < 0.001; and the concordance was fair to good: ECI vs. WCI Intraclass Correlation Coefficient type A (ICC A ) = 0.675 (CI 95% 0.665–0.684) p < 0.001; ECI vs. CCI ICC A = 0.797 (CI 95% 0.780–0.812), p < 0.001; and CCI vs. WCI ICC A = 0.731 (CI 95% 0.667–0.779), p < 0.001. The multivariate regression analysis demonstrated that comorbidity increased the risk of in-hospital mortality, with differences depending on the comorbidity measurement scale: odds ratio [OR] = 2.10 (95% confidence interval [95% CI] 2.00–2.20) p > |z| < 0 using ECI; OR = 2.31 (CI 95% 2.21–2.41) p > |z| < 0 for WCI; and OR = 2.53 (CI 95% 2.40–2.67) p > |z| < 0 employing CCI. The area under the curve [AUC] = 0.714 (CI 95% 0.706–0.721) using as a predictor of in-hospital mortality CCI, AUC = 0.729 (CI 95% 0.721–0.737) for ECI and AUC = 0.750 (CI 95% 0.743–0.758) using WCI, with statistical significance ( p < 0.001). Conclusion: Comorbidity plays an important role as a predictor of in-hospital mortality, with differences depending on the measurement scale used, the van Walraven comorbidity index being the best predictor of in-hospital mortality.

Keywords: ICD-10; comorbidity; administrative data (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/19/18/11262/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/18/11262/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:18:p:11262-:d:909262

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11262-:d:909262