EconPapers    
Economics at your fingertips  
 

Investigating Flood Risks of Rainfall and Storm Tides Affected by the Parameter Estimation Coupling Bivariate Statistics and Hydrodynamic Models in the Coastal City

Hongshi Xu, Kui Xu (), Tianye Wang and Wanjie Xue
Additional contact information
Hongshi Xu: Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China
Kui Xu: State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300354, China
Tianye Wang: Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China
Wanjie Xue: Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China

IJERPH, 2022, vol. 19, issue 19, 1-18

Abstract: The public health risk caused by urban floods is a global concern. Flood risks are amplified by the interaction of rainfall and storm tides in coastal cities. In this study, we investigate the flood risks of rainfall and storm tides coupling statistical and hydrodynamic models and evaluate the influence of different parameter estimation methods and bivariate return periods (RPs) on flood risks in the coastal city. The statistical model is used to obtain the bivariate design of rainfall and storm tides with the integration of copula function, most-likely weight function and Monte Carlo simulation method. The bivariate designs are adopted as the input boundaries for the hydrodynamic model established by Personal Computer Storm Water Management Model (PCSWMM), and the flood risk is evaluated by the hydrodynamic model. Subsequently, the influence of different parameter estimation approaches (that is, parametric and non-parametric) and bivariate RPs (that is, co-occurrence RP, joint RP, and Kendall RP) on bivariate designs and flood risks are investigated. With Haikou coastal city in China as the case study, the results show that: (1) Gumbel copula is the best function to describe the correlation structure between rainfall and storm tides for the parametric and non-parametric approaches, and the non-parametric approach is a better fit for the observed data; (2) when the Kendall RP is large (more than 100 years), the flood risk is underestimated with an average of 17% by the non-parametric estimation, and the parametric estimation approach is recommended as it is considered the most unfavorable scenario; (3) the types of bivariate RP have the important impact on the flood risk. When there is no specific application need, the Kendall RP can be adopted as the bivariate design standard of flooding facilities since it can describe the dangerous areas more accurately for multivariate scenario. The results can provide references for reasonable flood risk assessment and flooding facility design in coastal cities.

Keywords: flood risk; parameter estimation; bivariate return period; hydrodynamic model (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1660-4601/19/19/12592/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/19/12592/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:19:p:12592-:d:931888

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12592-:d:931888