EconPapers    
Economics at your fingertips  
 

Bioremediation of Cadmium Toxicity in Wheat ( Triticum aestivum L.) Plants Primed with L-Proline, Bacillus subtilis and Aspergillus niger

Sarmad Bashir, Sadia Javed (), Khalid Mashay Al-Anazi, Mohammad Abul Farah and Sajad Ali
Additional contact information
Sarmad Bashir: Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
Sadia Javed: Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
Khalid Mashay Al-Anazi: Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
Mohammad Abul Farah: Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
Sajad Ali: Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea

IJERPH, 2022, vol. 19, issue 19, 1-17

Abstract: Cadmium toxicity is one of the deleterious abiotic factors that reduce wheat production. Two different cultivars (Akbar and Dilkash) were compared for their cadmium (0, 40 and 80 mg/kg) tolerance and responses towards Bacillus subtilis NA2, Aspergillus niger PMI-118 and L-proline. Both microbes were tested for heavy metal tolerance and production of various plant hormones and biological active enzyme characteristics under normal and cadmium stress. A completely randomized design (two cultivars × four treatments × three cadmium levels × three replicates) was adopted using distilled water as a control. The growth promotion potential of these strains under cadmium stress was determined by N-fixation, IAA synthesis, P-solubilization, amylase and proteases production. A pot experiment under controlled conditions was conducted to evaluate the effect of bacteria, fungi, and L-proline under cadmium stress. It was indicated from the result that plant biomass (46.43%), shoot length (22.40%), root length (25.06%), chlorophyll (17.17%), total sugars (27.07%), total proteins (86.01%) and ascorbic acid (83.27%) were improved with inoculation under control and cadmium stress. The accumulation of total flavonoids (48.64%), total phenolics (24.88%), hydrogen peroxide (53.96%) and activities of antioxidant enzymes CAT (26.37%) and APX (43.71%) were reduced in the plants treated with bacteria, fungi and L-proline than those under control. With parallel aids, Bacillus subtilis NA2 showed a higher cadmium tolerance and plant growth stability as compared to Aspergillus niger PMI-118 and L-proline and may be adopted in the future.

Keywords: bio-stimulation; heavy metals; abiotic stress; plants; soils; microorganisms; cereal crops (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/19/19/12683/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/19/12683/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:19:p:12683-:d:933083

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12683-:d:933083