Assessment of Meteorological Variables and Air Pollution Affecting COVID-19 Cases in Urban Agglomerations: Evidence from China
Mingyue Zhao,
Yuanxin Liu and
Amatus Gyilbag
Additional contact information
Mingyue Zhao: Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Yuanxin Liu: Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100048, China
Amatus Gyilbag: Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
IJERPH, 2022, vol. 19, issue 1, 1-14
Abstract:
The 2019 novel coronavirus disease (COVID-19) has become a severe public health and social problem worldwide. A limitation of the existing literature is that multiple environmental variables have not been frequently elaborated, which is why the overall effect of the environment on COVID-19 has not been conclusive. In this study, we used generalized additive model (GAM) to detect the relationship between meteorological and air pollution variables and COVID-19 in four urban agglomerations in China and made comparisons among the urban agglomerations. The four urban agglomerations are Beijing-Tianjin-Hebei (BTH), middle reaches of the Yangtze River (MYR), Yangtze River Delta (YRD), and the Pearl River Delta (PRD). The daily rates of average precipitation, temperature, relative humidity, sunshine duration, and atmospheric pressure were selected as meteorological variables. The PM 2.5 , PM 10 , sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), ozone (O 3 ), and carbon monoxide (CO) contents were selected as air pollution variables. The results indicated that meteorological and air pollution variables tended to be significantly correlated. Moreover, the nature of the relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and meteorological and air pollution variables (i.e., linear or nonlinear) varied with urban agglomerations. Among the variance explained by GAMs, BTH had the highest value (75.4%), while MYR had the lowest value (35.2%). The values of the YRD and PRD were between the above two, namely 45.6% and 62.2%, respectively. The findings showed that the association between SARS-CoV-2 and meteorological and air pollution variables varied in regions, making it difficult to obtain a relationship that is applicable to every region. Moreover, this study enriches our understanding of SARS-CoV-2. It is required to create awareness within the government that anti-COVID-19 measures should be adapted to the local meteorological and air pollution conditions.
Keywords: meteorological variables; air pollution; COVID-19; urban agglomeration; GAM (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/1/531/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/1/531/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:1:p:531-:d:717256
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().