EconPapers    
Economics at your fingertips  
 

Forecasting Weekly Dengue Cases by Integrating Google Earth Engine-Based Risk Predictor Generation and Google Colab-Based Deep Learning Modeling in Fortaleza and the Federal District, Brazil

Zhichao Li ()
Additional contact information
Zhichao Li: Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

IJERPH, 2022, vol. 19, issue 20, 1-16

Abstract: Efficient and accurate dengue risk prediction is an important basis for dengue prevention and control, which faces challenges, such as downloading and processing multi-source data to generate risk predictors and consuming significant time and computational resources to train and validate models locally. In this context, this study proposed a framework for dengue risk prediction by integrating big geospatial data cloud computing based on Google Earth Engine (GEE) platform and artificial intelligence modeling on the Google Colab platform. It enables defining the epidemiological calendar, delineating the predominant area of dengue transmission in cities, generating the data of risk predictors, and defining multi-date ahead prediction scenarios. We implemented the experiments based on weekly dengue cases during 2013–2020 in the Federal District and Fortaleza, Brazil to evaluate the performance of the proposed framework. Four predictors were considered, including total rainfall (R sum ), mean temperature (T mean ), mean relative humidity (RH mean ), and mean normalized difference vegetation index (NDVI mean ). Three models (i.e., random forest (RF), long-short term memory (LSTM), and LSTM with attention mechanism (LSTM-ATT)), and two modeling scenarios (i.e., modeling with or without dengue cases) were set to implement 1- to 4-week ahead predictions. A total of 24 models were built, and the results showed in general that LSTM and LSTM-ATT models outperformed RF models; modeling could benefit from using historical dengue cases as one of the predictors, and it makes the predicted curve fluctuation more stable compared with that only using climate and environmental factors; attention mechanism could further improve the performance of LSTM models. This study provides implications for future dengue risk prediction in terms of the effectiveness of GEE-based big geospatial data processing for risk predictor generation and Google Colab-based risk modeling and presents the benefits of using historical dengue data as one of the input features and the attention mechanism for LSTM modeling.

Keywords: dengue risk prediction; big geospatial data; Google Earth Engine; cloud deep learning; Google Colab (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1660-4601/19/20/13555/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/20/13555/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:20:p:13555-:d:947297

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:19:y:2022:i:20:p:13555-:d:947297