The Long-Term Impact of COVID-19 Lockdowns in Istanbul
Elçin Tan ()
Additional contact information
Elçin Tan: Department of Meteorological Engineering, Aeronautics and Astronautics Faculty, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
IJERPH, 2022, vol. 19, issue 21, 1-22
Abstract:
The World Health Organization (WHO) have set sustainability development goals to reduce diseases, deaths, and the environmental impact of cities due to air pollution. In Istanbul, although average pollutant concentrations have been on a downward trend in recent years, extreme values and their annual exceedance numbers are high based on the air quality standards of WHO and the EU. Due to COVID-19 lockdowns, statistically significant reductions in emissions were observed for short periods. However, how long the effect of the lockdowns will last is unknown. For this reason, this study aims to investigate the impact of long-term lockdowns on Istanbul’s air quality. The restriction period is approximated to the same periods of the previous years to eliminate seasonal effects. A series of paired t-tests ( p -value < 0.05) were applied to hourly data from 12 March 2016, until 1 July 2021, when quarantines were completed at 36 air quality monitoring stations in Istanbul. The findings reveal that the average air quality of Istanbul was approximately 17% improved during the long-term lockdowns. Therefore, the restriction-related changes in emission distributions continued in the long-term period of 476 days. However, it is unknown how long this effect will continue, which will be the subject of future studies. Moreover, it was observed that the emission probability density functions changed considerably during the lockdowns compared to the years before. Accordingly, notable decreases were detected in air quality limit exceedances in terms of both excessive pollutant concentrations and frequency of occurrence, respectively, for PM 10 (−13% and −13%), PM 2.5 (−16% and −30%), and NO 2 (−3% and −8%), but not for O 3 (+200% and +540%) and SO 2 (−10% and +2.5%).
Keywords: COVID-19 lockdown; particulate matter; nitrogen dioxide; ozone; sulfur dioxide (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/21/14235/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/21/14235/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:21:p:14235-:d:958919
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().