Multi-Scenario Simulation to Predict Ecological Risk Posed by Urban Sprawl with Spontaneous Growth: A Case Study of Quanzhou
Jiangfu Liao,
Lina Tang () and
Guofan Shao
Additional contact information
Jiangfu Liao: Computer Engineering College, Jimei University, Xiamen 361021, China
Lina Tang: Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Guofan Shao: Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
IJERPH, 2022, vol. 19, issue 22, 1-22
Abstract:
The rapid expansion of different types of urban land continues to erode natural and semi-natural ecological space and causes irreversible ecological damage to rapidly industrialized and urbanized areas. This work considers Quanzhou, a typical industrial and trade city in southeastern China as the research area and uses a Markov chain integrated into the patch-generating land use simulation (PLUS) model to simulate the urban expansion of Quanzhou from 2005 to 2018. The PLUS model uses the random forest algorithm to determine the contribution of driving factors and simulate the organic and spontaneous growth process based on the seed generation mechanism of multi-class random patches. Next, leveraging the importance of ecosystem services and ecological sensitivity as indicators of evaluation endpoints, we explore the temporal and spatial evolution of ecological risks from 2018 to 2031 under the scenarios of business as usual (BAU), industrial priority, and urban transformation scenarios. The evaluation endpoints cover water conservation service, soil conservation service, biodiversity maintenance service, soil erosion sensitivity, riverside sensitivity, and soil fertility. The ecological risk studied in this work involves the way in which different types of construction land expansion can possibly affect the ecosystem. The ecological risk index is divided into five levels. The results show that during the calibration simulation period from 2005 to 2018 the overall accuracy and Kappa coefficient reached 91.77% and 0.878, respectively. When the percent-of-seeds (PoS) parameter of random patch seeds equals 0.0001, the figure of merit of the simulated urban construction land improves by 3.9% compared with the logistic-based cellular automata model (Logistic-CA) considering organic growth. When PoS = 0.02, the figure of merit of the simulated industrial and mining land is 6.5% higher than that of the Logistic-CA model. The spatial reconstruction of multiple types of construction land under different urban development goals shows significant spatial differentiation on the district and county scale. In the industrial-priority scenario, the area of industrial and mining land is increased by 20% compared with the BAU scenario, but the high-level risk area is 42.5% larger than in the BAU scenario. Comparing the spatial distribution of risks under the BAU scenario, the urban transition scenario is mainly manifested as the expansion of medium-level risk areas around Quanzhou Bay and the southern region. In the future, the study area should appropriately reduce the agglomeration scale of urban development and increase the policy efforts to guide the development of industrial land to the southeast.
Keywords: cellular automata; urban sprawl; spontaneous growth; scenario simulation; ecological risk (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/22/15358/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/22/15358/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:22:p:15358-:d:978899
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().