EconPapers    
Economics at your fingertips  
 

A Digital Template for the Generic Multi-Risk (GenMR) Framework: A Virtual Natural Environment

Arnaud Mignan ()
Additional contact information
Arnaud Mignan: Institute of Risk Analysis, Prediction and Management (Risks-X), Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China

IJERPH, 2022, vol. 19, issue 23, 1-22

Abstract: Extreme disasters, defined as low-probability–high-consequences events, are often due to cascading effects combined to amplifying environmental factors. While such a risk complexity is commonly addressed by the modeling of site-specific multi-risk scenarios, there exists no harmonized approach that considers the full space of possibilities, based on the general relationships between the environment and the perils that populate it. In this article, I define the concept of a digital template for multi-risk R&D and prototyping in the Generic Multi-Risk (GenMR) framework. This digital template consists of a virtual natural environment where different perils may occur. They are geological (earthquakes, landslides, volcanic eruptions), hydrological (river floods, storm surges), meteorological (windstorms, heavy rains), and extraterrestrial (asteroid impacts). Both geological and hydrological perils depend on the characteristics of the natural environment, here defined by two environmental layers : topography and soil. Environmental objects , which alter the layers, are also defined. They are here geomorphic structures linked to some peril source characteristics. Hazard intensity footprints are then generated for primary, secondary, and tertiary perils. The role of the natural environment on intensity footprints and event cascading is emphasized, one example being the generation of a “quake lake”. Future developments, à la SimCity , are finally discussed.

Keywords: multi-hazard; accumulation risk; geometric modeling; morphometry; cellular automaton; virtual reality; digital twin; world simulation; complex earth system (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/19/23/16097/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/23/16097/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:23:p:16097-:d:990757

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16097-:d:990757