EconPapers    
Economics at your fingertips  
 

Enhancing Mechanisms of the Plant Growth-Promoting Bacterial Strain Brevibacillus sp. SR-9 on Cadmium Enrichment in Sweet Sorghum by Metagenomic and Transcriptomic Analysis

Xiao-Qi Li, Yong-Qi Liu, Ying-Jun Li, Hui Han, Hao Zhang, Ming-Fei Ji () and Zhao-Jin Chen ()
Additional contact information
Xiao-Qi Li: Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China
Yong-Qi Liu: Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China
Ying-Jun Li: Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China
Hui Han: Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China
Hao Zhang: Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China
Ming-Fei Ji: Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China
Zhao-Jin Chen: Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China

IJERPH, 2022, vol. 19, issue 23, 1-16

Abstract: To explore the mechanism by which the plant growth-promoting bacterium Brevibacillus sp. SR-9 improves sweet sorghum tolerance and enriches soil cadmium (Cd) under pot conditions, the effect of strain SR-9 inoculation on the microbial community of sorghum rhizosphere soil was analyzed by metagenomics. Gene expression in sweet sorghum roots was analyzed using transcriptomics. The results showed that strain SR-9 promoted the growth of sweet sorghum and improved the absorption and enrichment of Cd in the plants. Compared with the uninoculated treatment, the aboveground part and root dry weight in strain SR-9 inoculated with sorghum increased by 21.09% and 17.37%, respectively, and the accumulation of Cd increased by 135% and 53.41%, respectively. High-throughput sequencing showed that strain SR-9 inoculation altered the rhizosphere bacterial community, significantly increasing the relative abundance of Actinobacteria and Firmicutes. Metagenomic analysis showed that after inoculation with strain SR-9, the abundance of genes involved in amino acid transport metabolism, energy generation and conversion, and carbohydrate transport metabolism increased. KEGG functional classification showed that inoculation with strain SR-9 increased the abundance of genes involved in soil microbial metabolic pathways in the rhizosphere soil of sweet sorghum and the activity of soil bacteria. Transcriptome analysis identified 198 upregulated differentially expressed genes in sweet sorghum inoculated with strain SR-9, including those involved in genetic information processing, biological system, metabolism, environmental information processing, cellular process, and human disease. Most of the annotated differentially expressed genes were enriched in the metabolic category and were related to pathways such as signal transduction, carbohydrate metabolism, amino acid metabolism, and biosynthesis of other secondary metabolites. This study showed that plant growth-promoting bacteria can alter the rhizosphere bacterial community composition, increasing the activity of soil bacteria and upregulating gene expression in sweet sorghum roots. The findings enhance our understanding of the microbiological and botanical mechanisms by which plant growth-promoting bacterial inoculation improves the remediation of heavy metals by sorghum.

Keywords: sweet sorghum; plant growth-promoting bacteria; Cd; metagenome; transcriptome (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/19/23/16309/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/23/16309/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:23:p:16309-:d:994490

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16309-:d:994490