EconPapers    
Economics at your fingertips  
 

Understanding Agri-Food Traceability System User Intention in Respond to COVID-19 Pandemic: The Comparisons of Three Models

Yafen Tseng, Beyfen Lee, Chingi Chen and Wang He
Additional contact information
Yafen Tseng: Digital Design and Information Management, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
Beyfen Lee: Department of Hospitality Management, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
Chingi Chen: Department of Health Care Administration, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
Wang He: School of International Business, Jiangxi University of Finance and Economics, Nanchang 330013, China

IJERPH, 2022, vol. 19, issue 3, 1-20

Abstract: Scientists believed the outbreak of COVID-19 could be linked to the consumption of wild animals, so food safety and hygiene have become the top concerns of the public. An agri-food traceability system becomes very important in this context because it can help the government to trace back the entire production and delivery process in case of food safety concerns. The traceability system is a complicated digitalized system because it integrates information and logistics systems. Previous studies used the technology acceptance model (TAM), information systems (IS) success model, expectation confirmation model (ECM), or extended model to explain the continuance intention of traceability system users. Very little literature can be found integrating two different models to explain user intention, not to mention comparing three models in one research context. This study proposed the technology acceptance model (TAM), technology acceptance model-information systems (TAM-IS) success, and technology acceptance model-expectation confirmation model (TAM-ECM) integrated models to evaluate the most appropriate model to explain agri-food traceability system during the COVID-19 pandemic. A questionnaire was designed based on a literature review, and 197 agri-food traceability system users were sampled. The collected data were analyzed by partial least square (PLS) to understand the explanatory power and the differences between the three models. The results showed that: (1) the TAM model has a fair explanatory power of continuance intention (62.2%), but was recommended for its’ simplicity; (2) the TAM-IS success integrated model had the best predictive power of 78.3%; and (3) the system providers should raise users’ confirmation level, so their continuance intention could be reinforced through mediators, perceived value, and satisfaction. The above findings help to understand agri-food traceability system user intention, and provide theoretical and practical implications for system providers to refine their system design.

Keywords: COVID-19; continuance intention; traceability system; technology acceptance model; information systems success model; expectation confirmation model (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1660-4601/19/3/1371/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/3/1371/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:3:p:1371-:d:734915

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1371-:d:734915