EconPapers    
Economics at your fingertips  
 

Temporal and Spatial Dynamics of EEG Features in Female College Students with Subclinical Depression

Shanguang Zhao, Siew-Cheok Ng, Selina Khoo and Aiping Chi
Additional contact information
Shanguang Zhao: Centre for Sport and Exercise Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
Siew-Cheok Ng: Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
Selina Khoo: Centre for Sport and Exercise Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
Aiping Chi: Institute of Physical Education, Shaanxi Normal University, Xi’an 710119, China

IJERPH, 2022, vol. 19, issue 3, 1-17

Abstract: Synchronization of the dynamic processes in structural networks connect the brain across a wide range of temporal and spatial scales, creating a dynamic and complex functional network. Microstate and omega complexity are two reference-free electroencephalography (EEG) measures that can represent the temporal and spatial complexities of EEG data. Few studies have focused on potential brain spatiotemporal dynamics in the early stages of depression to use as an early screening feature for depression. Thus, this study aimed to explore large-scale brain network dynamics of individuals both with and without subclinical depression, from the perspective of temporal and spatial dimensions and to input them as features into a machine learning framework for the automatic diagnosis of early-stage depression. To achieve this, spatio–temporal dynamics of rest-state EEG signals in female college students ( n = 40) with and without ( n = 38) subclinical depression were analyzed using EEG microstate and omega complexity analysis. Then, based on differential features of EEGs between the two groups, a support vector machine was utilized to compare performances of spatio–temporal features and single features in the classification of early depression. Microstate results showed that the occurrence rate of microstate class B was significantly higher in the group with subclinical depression when compared with the group without. Moreover, the duration and contribution of microstate class C in the subclinical group were both significantly lower than in the group without subclinical depression. Omega complexity results showed that the global omega complexity of β-2 and γ band was significantly lower for the subclinical depression group compared with the other group ( p < 0.05). In addition, the anterior and posterior regional omega complexities were lower for the subclinical depression group compared to the comparison group in α-1, β-2 and γ bands. It was found that AUC of 81% for the differential indicators of EEG microstates and omega complexity was deemed better than a single index for predicting subclinical depression. Thus, since temporal and spatial complexity of EEG signals were manifestly altered in female college students with subclinical depression, it is possible that this characteristic could be adopted as an early auxiliary diagnostic indicator of depression.

Keywords: depression; microstate; omega complexity; resting-state EEG; visual processing (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/19/3/1778/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/3/1778/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:3:p:1778-:d:742172

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1778-:d:742172