EconPapers    
Economics at your fingertips  
 

Effects of Growing Rod Technique with Different Surgical Modes and Growth Phases on the Treatment Outcome of Early Onset Scoliosis: A 3-D Finite Element Analysis

Baoqing Pei, Da Lu, Xueqing Wu, Yangyang Xu, Chenghao Ma and Shuqin Wu
Additional contact information
Baoqing Pei: Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
Da Lu: Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
Xueqing Wu: Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
Yangyang Xu: Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
Chenghao Ma: Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
Shuqin Wu: School of Big Data and Information, Shanxi College of Technology, Shuozhou 036000, China

IJERPH, 2022, vol. 19, issue 4, 1-16

Abstract: Early onset scoliosis (EOS) is emerging as a serious threat to children’s health and is the third largest threat to their health after myopia and obesity. At present, the growing rod technique (GRT), which allows patients to regain a well-balanced sagittal profile, is commonly considered as an invasive surgical procedure for the treatment of EOS. However, the risk of postoperative complications and instrumentation breakage remains high, which is mainly related to the choice of fixed mode. Several authors have studied primary stability and instrumentation loads, neglecting the mechanical transmission of the spinal long-segment model in different growth phases, which is fundamental to building a complete biomechanical environment. The present study aimed to investigate the kinematic and biomechanical properties that occur after GRT, across the long spinal structure and the posterior instrumentation, which are affected by unilateral or bilateral fixation. Accordingly, spinal segments (C6-S1) were loaded under flexion (Flex), extension (Ext), left lateral bending (LB), right lateral bending (RB), left torsion (LT), and right torsion (RT) using 11 established spinal models, which were from three growth phases. The stress distribution, spinal and intervertebral range of motion (ROM), counter torque of the vertebra, and bracing force on the rods were measured. The results showed that bilateral posterior fixation (BPF) is more stable than unilateral posterior fixation (UPF), at the expense of more compensations for the superior adjacent segment (SAS), especially when the superior fixed segment is closer to the head. Additionally, the bracing force of the instrumentation on the spine increases as the Cobb angle decreases. Accordingly, this biomechanical analysis provides theoretical suggestions for the selection of BPF or UPF and fixed segments in different growing phases.

Keywords: children’s health; early onset scoliosis; bilateral/unilateral posterior fixation; different growth phases; finite element analysis (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/19/4/2057/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/4/2057/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:4:p:2057-:d:747820

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2057-:d:747820