Solid-State Fermentation of Chestnut Shells and Effect of Explanatory Variables in Predictive Saccharification Models
Paula A. Pinto,
Rui M. F. Bezerra,
Irene Fraga,
Carla Amaral,
Ana Sampaio and
Albino A. Dias
Additional contact information
Paula A. Pinto: CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
Rui M. F. Bezerra: CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
Irene Fraga: CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
Carla Amaral: CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
Ana Sampaio: CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
Albino A. Dias: CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD—Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
IJERPH, 2022, vol. 19, issue 5, 1-10
Abstract:
In this study, chestnut shells (CNS), a recalcitrant and low-value agro-industrial waste obtained during the peeling of Castanea sativa fruits, were subjected to solid-state fermentation by six white-rot fungal strains ( Irpex lacteus , Ganoderma resinaceum , Phlebia rufa , Bjerkandera adusta and two Trametes isolates). After being fermented, CNS was subjected to hydrolysis by a commercial enzymatic mix to evaluate the effect of fermentation in saccharification yield. After 48 h hydrolysis with 10 CMCase U mL −1 enzymatic mix, CNS fermented with both Trametes strains was recorded with higher saccharification yield (around 253 mg g −1 fermented CNS), representing 25% w / w increase in reducing sugars as compared to non-fermented controls. To clarify the relationships and general mechanisms of fungal fermentation and its impacts on substrate saccharification, the effects of some independent or explanatory variables in the production of reducing sugars were estimated by general predictive saccharification models. The variables considered were lignocellulolytic activities in fungal fermentation, CNS hydrolysis time, and concentration of enzymatic hydrolysis mix. Multiple linear regression analysis revealed a very high significant effect ( p < 0.0001) of fungal laccase and xylanase activities in the saccharification models, thus proving the key potential of these enzymes in CNS solid-state fermentation.
Keywords: chestnut shells; enzymatic hydrolysis; fungal pretreatment; waste valorization (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/5/2572/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/5/2572/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:5:p:2572-:d:756471
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().