Fluoxetine Removal from Aqueous Solutions Using a Lignocellulosic Substrate Colonized by the White-Rot Fungus Pleurotus ostreatus
Andreia D. M. Silva,
Juliana Sousa,
Malin Hultberg,
Sónia A. Figueiredo,
Olga M. Freitas and
Cristina Delerue-Matos
Additional contact information
Andreia D. M. Silva: REQUIMTE/LAQV—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, 4200-072 Porto, Portugal
Juliana Sousa: REQUIMTE/LAQV—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, 4200-072 Porto, Portugal
Malin Hultberg: Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, 230 53 Skara, Sweden
Sónia A. Figueiredo: REQUIMTE/LAQV—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, 4200-072 Porto, Portugal
Olga M. Freitas: REQUIMTE/LAQV—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, 4200-072 Porto, Portugal
Cristina Delerue-Matos: REQUIMTE/LAQV—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, 4200-072 Porto, Portugal
IJERPH, 2022, vol. 19, issue 5, 1-16
Abstract:
One of the main challenges in both the design of new wastewater treatment plants and the expansion and improvement of existing ones is the removal of emerging pollutants. Therefore, the search for economic and sustainable treatments is needed to enhance the removal of pharmaceuticals. The potential of a lignocellulosic substrate colonized by Pleurotus ostreatus , a waste from mushroom production, to remove fluoxetine from aqueous solutions was studied. Batch assays were performed to remove 600 µg∙L −1 fluoxetine from aqueous solutions using the colonized mushroom substrate (CMS) and crude enzyme extracts. The removal efficiencies achieved were, respectively, ≥83.1% and 19.6% in 10 min. Batch assays with sterilized CMS and 1-aminobenzotriazole (to inhibit cytochrome P450 enzymes) showed that the higher removal efficiencies achieved in the CMS assays may be attributed to the synergistic contribution of biosorption onto the CMS and lignin modifying enzymes activity, namely laccase activity. A column assay was performed with the CMS, fed with 750 µg∙L −1 fluoxetine aqueous solution. The removal efficiency was 100% during 30 min, decreasing to a final value of 70% after 8 h of operation. The results suggested that CMS can be a promising eco-friendly alternative to remove fluoxetine from aqueous solutions.
Keywords: crude enzyme extracts; laccase activity; mycoremediation; pharmaceuticals; colonized mushroom substrate; tertiary treatment (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/5/2672/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/5/2672/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:5:p:2672-:d:758334
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().