Processing of Distillery Stillage to Recover Phenolic Compounds with Ultrasound-Assisted and Microwave-Assisted Extractions
Wioleta Mikucka,
Magdalena Zielinska,
Katarzyna Bulkowska and
Izabela Witonska
Additional contact information
Wioleta Mikucka: Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna St. 45G, 10-709 Olsztyn, Poland
Magdalena Zielinska: Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna St. 45G, 10-709 Olsztyn, Poland
Katarzyna Bulkowska: Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna St. 45G, 10-709 Olsztyn, Poland
Izabela Witonska: Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego St. 116, 90-924 Lodz, Poland
IJERPH, 2022, vol. 19, issue 5, 1-21
Abstract:
This study investigated the effect of ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) conditions (extraction time, acetone concentration, solid-to-solvent ratio) on the efficiency of polyphenol recovery from distillery stillage and antioxidant activity of the extracts. The highest total polyphenol content, flavonoid content, and phenolic acid content were obtained with 10-min UAE and 5-min MAE at a solid-to-acetone ratio of 1:15 ( w : v ). Recovery yield was the highest with an aqueous solution of 60% acetone, confirming the results of Hansen Solubility Parameter analysis. Although UAE resulted in approximately 1.2 times higher extraction yield, MAE showed a better balance between extraction yield and energy consumption exhibited by its 3-fold higher extraction rate than that of UAE. Content of total polyphenols and phenolic acids strongly correlated with antioxidant activity, indicating that these compounds provide a substantial contribution to the bioactive properties of the extracts. Six phenolic acids were extracted, predominately ferulic and p-coumaric acids, and free forms of these acids constituted 91% of their total content, which opens various possibilities for their application in the food, cosmetics, and pharmaceutical industries.
Keywords: distillery by-product; bioactive compounds; phenolic acids; flavonoids; HPLC; waste valorization (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/5/2709/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/5/2709/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:5:p:2709-:d:759074
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().