The Study of Variation of Metabolites by Sleep Deficiency, and Intervention Possibility of Aerobic Exercise
Jong-Suk Park,
Young-Jun Kim,
Wan Heo and
Sangho Kim
Additional contact information
Jong-Suk Park: School of Global Sport Studies, Korea University, Sejong-si 30019, Korea
Young-Jun Kim: Department of Food and Biotechnology, Korea University, Sejong-si 30019, Korea
Wan Heo: Department of Food Science and Engineering, Seowon University, Cheongju-si 28674, Korea
Sangho Kim: School of Global Sport Studies, Korea University, Sejong-si 30019, Korea
IJERPH, 2022, vol. 19, issue 5, 1-17
Abstract:
The purpose of this study is to determine the difference in sleep-related factors and metabolites between normal sleep (NS) and sleep deficiency (SD) and to analyze the variations in metabolites according to the intensity of aerobic exercise under SD conditions. This study was conducted on 32 healthy male university students. Participants experienced both NS (8 h of sleep per night for 3 consecutive days) and SD (4 h of sleep per night for 3 consecutive days). After the SD period, the participants underwent treatment for 30 min by the assigned group [sleep supplement after SD (SSD), low-intensity aerobic exercise after SD (LES), moderate-intensity aerobic exercise after SD (MES), high-intensity aerobic exercise after SD (HES)]. For analysis, sleep-related factors were measured, and metabolites were analyzed by untargeted metabolite analysis using gas chromatography-time-of-flight mass spectrometry. As a result, SD showed that total sleep time (TST), duration of rapid eye movement (REM), duration of light sleep, and duration of deep sleep were significantly decreased compared to NS, whereas the Pittsburgh sleep quality index (PSQI), Epworth sleepiness scale (ESS), and visual analogue scale (VAS) were significantly increased compared to NS. The difference in metabolites between NS and SD showed that there were significant changes in the seven metabolites. There were 18 metabolites that changed according to the treatment groups in SD conditions. In summary, SD can exacerbate sleep quality, induce daytime sleepiness, increase fatigue, and increase metabolites that cause insulin resistance. Aerobic exercise under SD conditions can reduce metabolites that induce insulin resistance and increase the metabolites that help relieve depression caused by SD. However, HES has a negative effect, which increases fatigue, whereas LES has no negative effect. Thus, this study suggests that LES is the most appropriate exercise method under SD conditions.
Keywords: sleep deficiency; aerobic exercise; sleep-related factor; metabolites; metabolomics (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/5/2774/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/5/2774/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:5:p:2774-:d:760059
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().