Enhanced Removal of Malachite Green Using Calcium-Functionalized Magnetic Biochar
Pengjie Wang,
Wei Chen,
Rui Zhang and
Yanfeng Xing
Additional contact information
Pengjie Wang: Heilongjiang Ecological Environment Monitoring Center, Harbin 150000, China
Wei Chen: Heilongjiang Ecological Environment Monitoring Center, Harbin 150000, China
Rui Zhang: Heilongjiang Ecological Environment Monitoring Center, Harbin 150000, China
Yanfeng Xing: Heilongjiang Ecological Environment Monitoring Center, Harbin 150000, China
IJERPH, 2022, vol. 19, issue 6, 1-14
Abstract:
To efficiently remove malachite green (MG), a novel calcium-functionalized magnetic biochar (Ca/MBC) was fabricated via a two-step pyrolysis method. Iron-containing oxides endowed the target complexes with magnetic properties, especially the chemotactic binding ability with MG, and the addition of calcium significantly changed the morphology of the material and improved its adsorption performance, especially the chemotactic binding ability with MG, which could be confirmed through FTIR, XPS, and adsorption experiments. Electrostatic adsorption, ligand exchange, and hydrogen bonding acted as essential drivers for an enhanced adsorption process, and the maximum theoretical adsorption capacity was up to 12,187.57 mg/g. Ca/MBC maintained a higher adsorption capacity at pH = 4–12, and after five adsorption–desorption cycles, the adsorption capacity and adsorption rate of MG remained at 1424.2 mg/g and 71.21%, highlighting the advantages of Ca/MBC on adsorbing MG. This study suggests that biochar can be modified by a green synthesis approach to produce calcium-functionalized magnetic biochar with excellent MG removal capacity. The synthetic material can not only remove pollutants from water but also provide an efficient way for soil remediation.
Keywords: magnetic biochar; calcium modification; malachite green; adsorption mechanism (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/6/3247/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/6/3247/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:6:p:3247-:d:767871
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().