Automated Detection of Hypertension Using Continuous Wavelet Transform and a Deep Neural Network with Ballistocardiography Signals
Jaypal Singh Rajput,
Manish Sharma,
T. Sudheer Kumar and
U. Rajendra Acharya
Additional contact information
Jaypal Singh Rajput: Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
Manish Sharma: Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
T. Sudheer Kumar: Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
U. Rajendra Acharya: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 639798, Singapore
IJERPH, 2022, vol. 19, issue 7, 1-16
Abstract:
Managing hypertension (HPT) remains a significant challenge for humanity. Despite advancements in blood pressure (BP)-measuring systems and the accessibility of effective and safe anti-hypertensive medicines, HPT is a major public health concern. Headaches, dizziness and fainting are common symptoms of HPT. In HPT patients, normalcy may be observed at one instant and abnormality may prevail during a long duration of 24 h ambulatory BP. This may cause difficulty in identifying patients with HPT, and hence there is a possibility that individuals may be untreated or administered insufficiently. Most importantly, uncontrolled HPT can lead to severe complications (stroke, heart attack, kidney disease, and heart failure), mainly ignoring the signs in nascent stages. HPT in the beginning stages may not present distinct symptoms and may be difficult to diagnose from standard physiological signals. Hence, ballistocardiography (BCG) signal was used in this study to detect HPT automatically. The processed signals from BCG were converted into scalogram images using a continuous wavelet transform (CWT) and were then fed into a 2-D convolutional neural network model (2D-CNN). The model was trained to learn and recognize BCG patterns of healthy controls (HC) and HPT classes. Our proposed model obtained a high classification accuracy of 86.14% with a ten-fold cross-validation (CV) strategy. Hence, this is the first use of a 2D-CNN model (deep-learning algorithm) to detect HPT employing BCG signals.
Keywords: hypertension; BCG signal; hypertension BCG signal classification; deep learning; convolutional neural network (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/7/4014/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/7/4014/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:7:p:4014-:d:781516
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().