Insight into the Adsorption Behaviors of Antimony onto Soils Using Multidisciplinary Characterization
Zi-Qi Mu,
Da-Mao Xu and
Rong-Bing Fu
Additional contact information
Zi-Qi Mu: State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
Da-Mao Xu: State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
Rong-Bing Fu: State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
IJERPH, 2022, vol. 19, issue 7, 1-15
Abstract:
Antimony (Sb) pollution in soils is an important environmental problem, and it is imperative to investigate the migration and transformation behavior of Sb in soils. The adsorption behaviors and interaction mechanisms of Sb in soils were studied using integrated characterization techniques and the batch equilibrium method. The results indicated that the adsorption kinetics and isotherms of Sb onto soils were well fitted by the first-order kinetic, Langmuir, and Freundlich models, respectively, while the maximum adsorbed amounts of Sb (III) in soil 1 and soil 2 were 1314.46 mg/kg and 1359.25 mg/kg, respectively, and those of Sb (V) in soil 1 and soil 2 were 415.65 mg/kg and 535.97 mg/kg, respectively. In addition, pH ranging from 4 to 10 had little effect on the adsorption behavior of Sb. Moreover, it was found that Sb was mainly present in the residue fractions, indicating that Sb had high geochemical stability in soils. SEM analysis indicated that the distribution positions of Sb were highly coincident with Ca, which was mainly due to the existence of calcium oxides, such as calcium carbonate and calcium hydroxide, that affected Sb adsorption, and further resulted in Sb and Ca bearing co-precipitation. XPS analysis revealed the valence state transformation of Sb (III) and Sb (V), suggesting that Fe/Mn oxides and reactive oxygen species (ROS) served as oxidant or reductant to promote the occurrence of the Sb redox reaction. Sb was mobile and leachable in soils and posed a significant threat to surface soils, organisms, and groundwater. This work provides a fundamental understanding of Sb adsorption onto soils, as well as a theoretical guide for studies on the adsorption and migration behavior of Sb in soils.
Keywords: antimony pollution; soil; adsorption (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/7/4254/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/7/4254/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:7:p:4254-:d:786021
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().