EconPapers    
Economics at your fingertips  
 

A Method for the Analysis of Glyphosate, Aminomethylphosphonic Acid, and Glufosinate in Human Urine Using Liquid Chromatography-Tandem Mass Spectrometry

Zhong-Min Li and Kurunthachalam Kannan
Additional contact information
Zhong-Min Li: Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, USA
Kurunthachalam Kannan: Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, USA

IJERPH, 2022, vol. 19, issue 9, 1-14

Abstract: The extensive use of herbicides, such as glyphosate and glufosinate, in crop production during recent decades has raised concerns about human exposure. Nevertheless, analysis of trace levels of these herbicides in human biospecimens has been challenging. Here, we describe a method for the determination of urinary glyphosate, its degradation product aminomethylphosphonic acid (AMPA), and glufosinate using liquid chromatography-tandem mass spectrometry (LC–MS/MS). The method was optimized using isotopically labelled internal standards ( 13 C 2 , 15 N-glyphosate, 13 C, 15 N, D 2 -AMPA, and D 3 -glufosinate) and solid-phase extraction (SPE) with cation-exchange and anion-exchange cartridges. The method provides excellent chromatographic retention, resolution and peak shape of target analytes without the need for strong acidic mobile phases and derivatization steps. The instrument linearity was in the range of 0.1–100 ng/mL, with R > 0.99 in the matrix for all analytes. The method detection limits (MDLs) and the method quantification limits (MQLs) were in the ranges of 0.12 (AMPA and glufosinate)–0.14 (glyphosate) ng/mL and 0.40 (AMPA)–0.48 (glyphosate) ng/mL, respectively. The recoveries of analytes spiked into urine matrix ranged from 79.1% to 119%, with coefficients of variation (CVs) of 4–10%. Repeated analysis of samples for over 2 weeks showed intra-day and inter-day analytical variations of 3.13–10.8% and 5.93–12.9%, respectively. The matrix effects for glyphosate, AMPA, and glufosinate spiked into urine matrix averaged −14.4%, 13.2%, and 22.2%, respectively. The method was further validated through the analysis of external quality assurance proficiency test (PT) urine samples. The method offers optimal sensitivity, accuracy, and precision for the urine-based assessment of human exposure to glyphosate, AMPA, and glufosinate.

Keywords: glyphosate; aminomethylphosphonic acid; glufosinate; urine; LC–MS/MS (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/19/9/4966/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/9/4966/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:9:p:4966-:d:797273

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:4966-:d:797273