EconPapers    
Economics at your fingertips  
 

A Circular Economy Approach to Restoring Soil Substrate Ameliorated by Sewage Sludge with Amendments

Wiktor Halecki, Nuria Aide López-Hernández, Aleksandra Koźmińska, Krystyna Ciarkowska and Sławomir Klatka
Additional contact information
Wiktor Halecki: Department of Land Reclamation and Environmental Development, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
Nuria Aide López-Hernández: Montecillo Campus Address, Postgraduate College of Agricultural Sciences, Mexico-Texcoco Highway, Km. 36.5, Texcoco 56230, Mexico
Aleksandra Koźmińska: Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
Krystyna Ciarkowska: Department of Soil Science and Agrophysics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
Sławomir Klatka: Department of Land Reclamation and Environmental Development, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland

IJERPH, 2022, vol. 19, issue 9, 1-17

Abstract: This study examined the use of an artificial soil substrate in a mine waste reclamation area and its effect on plant metabolic functions. Research was conducted by determining the relationship between the plants’ biochemical features and the properties of plant growth medium derived from post-flotation coal waste, sewage sludge, crushed stone and fly ash on the surface of the mine waste disposal area. Trees and shrubs were established on the material and allowed to grow for eight years. The study determined that the applied plants and the naturally occurring Taraxacum officinale were suitable for physio-biochemical assessment, identification of derelict areas and reclamation purposes. An evaluation of a soil substrate applied to post-mining areas indicated that it was beneficial for plant growth since it activated the metabolic functions of herbaceous plants, shrubs, and trees. The study showed that soil substrate can be targeted to improve plant stress tolerance to potentially toxic elements (PTEs). These data suggest the potential for growth and slower susceptible response to Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. It is possible that the constructed soil-substitute substrate (biosolid material) would be an effective reclamation treatment in areas where natural soil materials are polluted by PTEs. This observation may reflect a more efficient use of soil substrate released from the cycling of organic biogene pools, in accordance with the circular economy approach. In further studies related to land reclamation using sewage sludge amendments, it would be necessary to extend the research to other stress factors, such as salinity or water deficiency.

Keywords: biochemical activity; enzymatic biomarkers; metal availability; post-mining remediation; sewage sludge amendments; substrate enrichment (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/19/9/5296/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/9/5296/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:9:p:5296-:d:803154

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5296-:d:803154