Updating Indoor Air Quality (IAQ) Assessment Screening Levels with Machine Learning Models
Ling-Tim Wong,
Kwok-Wai Mui and
Tsz-Wun Tsang
Additional contact information
Ling-Tim Wong: Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
Kwok-Wai Mui: Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
Tsz-Wun Tsang: Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
IJERPH, 2022, vol. 19, issue 9, 1-23
Abstract:
Indoor air quality (IAQ) standards have been evolving to improve the overall IAQ situation. To enhance the performances of IAQ screening models using surrogate parameters in identifying unsatisfactory IAQ, and to update the screening models such that they can apply to a new standard, a novel framework for the updating of screening levels, using machine learning methods, is proposed in this study. The classification models employed are Support Vector Machine (SVM) algorithm with different kernel functions (linear, polynomial, radial basis function (RBF) and sigmoid), k-Nearest Neighbors (kNN), Logistic Regression, Decision Tree (DT), Random Forest (RF) and Multilayer Perceptron Artificial Neural Network (MLP-ANN). With carefully selected model hyperparameters, the IAQ assessment made by the models achieved a mean test accuracy of 0.536–0.805 and a maximum test accuracy of 0.807–0.820, indicating that machine learning models are suitable for screening the unsatisfactory IAQ. Further to that, using the updated IAQ standard in Hong Kong as an example, the update of an IAQ screening model against a new IAQ standard was conducted by determining the relative impact ratio of the updated standard to the old standard. Relative impact ratios of 1.1–1.5 were estimated and the corresponding likelihood ratios in the updated scheme were found to be higher than expected due to the tightening of exposure levels in the updated scheme. The presented framework shows the feasibility of updating a machine learning IAQ model when a new standard is being adopted, which shall provide an ultimate method for IAQ assessment prediction that is compatible with all IAQ standards and exposure criteria.
Keywords: machine learning model; indoor air quality (IAQ) index; screening; assessment (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/19/9/5724/pdf (application/pdf)
https://www.mdpi.com/1660-4601/19/9/5724/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:19:y:2022:i:9:p:5724-:d:810880
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().