Agent-Based Simulation for Infectious Disease Modelling over a Period of Multiple Days, with Application to an Airport Scenario
Thomas Harweg,
Mathias Wagner and
Frank Weichert ()
Additional contact information
Thomas Harweg: Department of Computer Science, TU Dortmund University, Otto-Hahn-Str. 16, 44227 Dortmund, North Rhine-Westphalia, Germany
Mathias Wagner: Department of Pathology, University of Saarland Medical School, Homburg Saar Campus, Kirrberger Strasse 100, 66424 Homburg Saar, Saarland, Germany
Frank Weichert: Department of Computer Science, TU Dortmund University, Otto-Hahn-Str. 16, 44227 Dortmund, North Rhine-Westphalia, Germany
IJERPH, 2022, vol. 20, issue 1, 1-20
Abstract:
With the COVID-19 pandemic, the role of infectious disease spreading in public places has been brought into focus more than ever. Places that are of particular interest regarding the spread of infectious diseases are international airport terminals, not only for the protection of staff and ground crew members but also to help minimize the risk of the spread of infectious entities such as COVID-19 around the globe. Computational modelling and simulation can help in understanding and predicting the spreading of infectious diseases in any such scenario. In this paper, we propose a model, which combines a simulation of high geometric detail regarding virus spreading with an account of the temporal progress of infection dynamics. We, thus, introduce an agent-based social force model for tracking the spread of infectious diseases by modelling aerosol traces and concentration of virus load in the air. We complement this agent-based model to have consistency over a period of several days. We then apply this model to investigate simulations in a realistic airport setting with multiple virus variants of varying contagiousness. According to our experiments, a virus variant has to be at least twelve times more contagious than the respective control to result in a level of infection of more than 30%. Combinations of agent-based models with temporal components can be valuable tools in an attempt to assess the risk of infection attributable to a particular virus and its variants.
Keywords: COVID-19; agent-based simulation; social-force model; numerical simulation; systems biology (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/20/1/545/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/1/545/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2022:i:1:p:545-:d:1018539
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().