Convolutional Neural Network-Based ECG-Assisted Diagnosis for Coal Workers
Yujia Wang,
Zhe Chen,
Sen Tian,
Shuxun Zhou,
Xinbo Wang,
Ling Xue () and
Jianhui Wu ()
Additional contact information
Yujia Wang: Key Laboratory of Coal Mine Health and Safety of Hebei Province, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan 063210, China
Zhe Chen: Jining Center for Disease Control and Prevention, No. 26 Yingcui Road, Rencheng District, Jining 272000, China
Sen Tian: Key Laboratory of Coal Mine Health and Safety of Hebei Province, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan 063210, China
Shuxun Zhou: College of Science, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan 063210, China
Xinbo Wang: College of Science, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan 063210, China
Ling Xue: Key Laboratory of Coal Mine Health and Safety of Hebei Province, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan 063210, China
Jianhui Wu: Key Laboratory of Coal Mine Health and Safety of Hebei Province, School of Public Health, North China University of Science and Technology, No. 21 Bohai Avenue, Caofeidian New Town, Tangshan 063210, China
IJERPH, 2022, vol. 20, issue 1, 1-17
Abstract:
Objective: To process and extract electrocardiogram (ECG, ECG, or EKG) features using a convolutional neural network (CNN) to establish an ECG-assisted diagnosis model. Methods: Coal workers who underwent physical examinations at Gequan Mine Hospital and Dongpang Mine Hospital of Hebei Jizhong Energy from July 2020 to September 2020 were selected as the study subjects. The ECG images were preprocessed. We use Python software and convolutional neural network to establish ECG images recognition and classification model.We usecalibration curve, calibration-in-the-large, Brier score, specificity, sensitivity, F1 score, Kappa value, accuracy, and area under the curve (AUC) of ROC to evaluate the performance of the model. Results: The number of abnormal ECG results was 849, and the rate of abnormal results was 25.02%. The test set accuracies of the sinus bradycardia model, nonspecific intraventricular conduction delay model, myocardial ischemia model, and sinus tachycardia model were 97.66%, 96.49%, 93.62%, and 93.02%, respectively; sensitivities were 96.63%, 96.30%, 96.88% and 95.24%, respectively; specificities were 98.78%, 96.67%, 86.67%, and 90.90%, respectively; Brier scores were 0.03, 0.07, 0.09, and 0.11, respectively; Calibration-in-the-large values were 0.026, 0.110, 0.041, and 0.098, respectively. Conclusions: The convolutional neural network model can accurately identify the main ECG abnormality types of coal workers. Additionally, the main ECG abnormalities in these coal company workers were sinus bradycardia, non-specific intraventricular conduction delay, myocardial ischemia, and sinus tachycardia.
Keywords: coal workers; ECG abnormalities; convolutional neural net; image recognition (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/20/1/9/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/1/9/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2022:i:1:p:9-:d:1008686
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().