EconPapers    
Economics at your fingertips  
 

Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation Combined with Motor Learning on Motor Function and Grip Force of the Upper Limbs and Activities of Daily Living in Patients with a Subacute Stroke

Jungwoo Shim and Seungwon Lee ()
Additional contact information
Jungwoo Shim: Department of Rehabilitation Medicine, Chungnam National University Sejong Hospital, Sejong-si 30099, Republic of Korea
Seungwon Lee: Department of Physical Therapy, Sahmyook University, Seoul 01792, Republic of Korea

IJERPH, 2023, vol. 20, issue 12, 1-11

Abstract: Functional paralysis of the upper extremities occurs in >70% of all patients after having a stroke, and >60% showed decreased hand dexterity. A total of 30 patients with a subacute stroke were randomly allocated to either high-frequency repetitive transcranial magnetic stimulation combined with motor learning ( n = 14) or sham repetitive transcranial magnetic stimulation combined with motor learning ( n = 16). High-frequency repetitive transcranial magnetic stimulation combined with the motor learning group was conducted for 20 min (10 min of high-frequency repetitive transcranial magnetic stimulation and 10 min of motor learning) three times a week for 4 weeks. The sham repetitive transcranial magnetic stimulation combined with the motor learning group received 12 20-min sessions (10 min of sham repetitive transcranial magnetic stimulation and 10 min of motor learning). This was held three times a week for 4 weeks. Upper-limb function (Fugl-Meyer Assessment of the Upper Limbs) and upper-limb dexterity (box and block tests) concerning upper-limb motor function and grip force (hand grip dynamometer), and activities of daily living (Korean version of the modified Barthel index), were measured pre- and post-intervention. In both groups, there were significant improvements in the upper-limb motor function, grip force, and activities of daily living ( p < 0.05). Regarding grip force, the high-frequency repetitive transcranial magnetic stimulation combined with the motor learning group improved significantly compared to the sham repetitive transcranial magnetic stimulation combined with the motor learning group ( p < 0.05). However, except for grip force, there were no significant differences in the upper-limb motor function or activities of daily living between the groups. These findings suggest that high-frequency repetitive transcranial magnetic stimulation combined with motor learning is more likely to improve grip force than motor learning alone.

Keywords: repetitive transcranial magnetic stimulation; motor learning; upper-limb motor function; grip force; stroke (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/20/12/6093/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/12/6093/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:12:p:6093-:d:1167521

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:20:y:2023:i:12:p:6093-:d:1167521