Distribution of Minor and Major Metallic Elements in Residential Indoor Dust: A Case Study in Latvia
Agnese Araja (),
Maris Bertins,
Gunita Celma,
Lauma Busa and
Arturs Viksna
Additional contact information
Agnese Araja: Faculty of Chemistry, University of Latvia, Jelgavas Str.1, LV-1004 Riga, Latvia
Maris Bertins: Faculty of Chemistry, University of Latvia, Jelgavas Str.1, LV-1004 Riga, Latvia
Gunita Celma: Faculty of Chemistry, University of Latvia, Jelgavas Str.1, LV-1004 Riga, Latvia
Lauma Busa: Faculty of Chemistry, University of Latvia, Jelgavas Str.1, LV-1004 Riga, Latvia
Arturs Viksna: Faculty of Chemistry, University of Latvia, Jelgavas Str.1, LV-1004 Riga, Latvia
IJERPH, 2023, vol. 20, issue 13, 1-17
Abstract:
The coronavirus disease 2019 (COVID-19) pandemic has not only brought considerable and permanent changes to economies and healthcare systems, but it has also greatly changed the habits of almost the entire society. During the lockdowns, people were forced to stay in their dwellings, which served as a catalyst for the initiation of a survey on the estimation of the metallic element content in residential indoor dust in different parts of Latvia. This article presents the study results obtained through the analysis of collected dust samples from 46 dwellings, both in the capital of Latvia, Riga, and in smaller cities. Two methods were employed for indoor dust collection: vacuum sampling and manual sampling with a brush and plastic spatula. After microwave-assisted acid extraction, the samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) in terms of the major (Na, K, Ca, Mg, Al and Fe) and minor (Mn, Ni, Co, Pb, Cr, As, Ba, Li, Be, B, V, Cu, Zn, Se, Rb, Sr, Cd, La, Ce and Bi) elements. For the data analysis, principal component analysis was performed. Among the measured metals, the highest values were determined for the macro and most abundant elements (Na > K > Ca > Fe > Mg > Al). The concentration ranges of the persistently detected elements were as follows: Pb, 0.27–1200 mg kg −1 ; Cd, 0.01–6.37 mg kg −1 ; Ni, 0.07–513 mg kg −1 ; As, 0.01–69.2 mg kg −1 ; Cu, 5.71–1900 mg kg −1 ; Zn, 53.6–21,100 mg kg −1 ; and Cr, 4.93–412 mg kg −1 . The critical limit values of metallic elements in soil defined by the legislation of the Republic of Latvia (indicating the level at or above which the functional characteristics of soil are disrupted, or pollution poses a direct threat to human health or the environment) were exceeded in the following numbers of dwellings: Pb = 4, Ni = 2, As = 1, Cu = 16, Cr = 1 and Zn = 28.
Keywords: indoor dust; metallic elements; dust sampling; ICP-MS; PCA (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/20/13/6207/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/13/6207/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:13:p:6207-:d:1177269
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().