Malaria Risk Drivers in the Brazilian Amazon: Land Use—Land Cover Interactions and Biological Diversity
William Gonzalez Daza (),
Renata L. Muylaert,
Thadeu Sobral-Souza and
Victor Lemes Landeiro
Additional contact information
William Gonzalez Daza: Programa do Pós-Graduação em Ecologia e Conservação da Biodiversidade, Departamento de Biociências, Av. Fernando Corrêa da Costa, 2367, Cuiabá 78060-900, MT, Brazil
Renata L. Muylaert: Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North 4472, New Zealand
Thadeu Sobral-Souza: Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil
Victor Lemes Landeiro: Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil
IJERPH, 2023, vol. 20, issue 15, 1-16
Abstract:
Malaria is a prevalent disease in several tropical and subtropical regions, including Brazil, where it remains a significant public health concern. Even though there have been substantial efforts to decrease the number of cases, the reoccurrence of epidemics in regions that have been free of cases for many years presents a significant challenge. Due to the multifaceted factors that influence the spread of malaria, influencing malaria risk factors were analyzed through regional outbreak cluster analysis and spatio-temporal models in the Brazilian Amazon, incorporating climate, land use/cover interactions, species richness, and number of endemic birds and amphibians. Results showed that high amphibian and bird richness and endemism correlated with a reduction in malaria risk. The presence of forest had a risk-increasing effect, but it depended on its juxtaposition with anthropic land uses. Biodiversity and landscape composition, rather than forest formation presence alone, modulated malaria risk in the period. Areas with low endemic species diversity and high human activity, predominantly anthropogenic landscapes, posed high malaria risk. This study underscores the importance of considering the broader ecological context in malaria control efforts.
Keywords: malaria; Amazon biome; INLA; land use/cover interactions; bird and amphibian richness-endemics; landscape composition; biological diversity; spatio-temporal modeling (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/20/15/6497/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/15/6497/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:15:p:6497-:d:1208479
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().