Predicting Unmet Healthcare Needs in Post-Disaster: A Machine Learning Approach
Hyun Jin Han and
Hae Sun Suh ()
Additional contact information
Hyun Jin Han: Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
Hae Sun Suh: Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
IJERPH, 2023, vol. 20, issue 19, 1-13
Abstract:
Unmet healthcare needs in the aftermath of disasters can significantly impede recovery efforts and exacerbate health disparities among the affected communities. This study aims to assess and predict such needs, develop an accurate predictive model, and identify the key influencing factors. Data from the 2017 Long-term Survey on the Change of Life of Disaster Victims in South Korea were analyzed using machine learning techniques, including logistic regression, C5.0 tree-based model, and random forest. The features were selected based on Andersen’s health behavior model and disaster-related factors. Among 1659 participants, 31.5% experienced unmet healthcare needs after a disaster. The random forest algorithm exhibited the best performance in terms of precision, accuracy, Under the Receiver Operating Characteristic (AUC-ROC), and F-1 scores. Subjective health status, disaster-related diseases or injuries, and residential area have emerged as crucial factors predicting unmet healthcare needs. These findings emphasize the vulnerability of disaster-affected populations and highlight the value of machine learning in post-disaster management policies for decision-making.
Keywords: supervised machine learning; post-disaster management; healthcare utilization (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/20/19/6817/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/19/6817/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:19:p:6817-:d:1246487
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().