EconPapers    
Economics at your fingertips  
 

Assessment of the Maximum Amount of Orthodontic Force for Dental Pulp and Apical Neuro-Vascular Bundle in Intact and Reduced Periodontium on Bicuspids (Part II)

Radu Andrei Moga (), Cristian Doru Olteanu, Mircea Botez and Stefan Marius Buru
Additional contact information
Radu Andrei Moga: Department of Cariology, Endodontics and Oral Pathology, School of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Str. Motilor 33, 400001 Cluj-Napoca, Romania
Cristian Doru Olteanu: Department of Orthodontics, School of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Str. Avram Iancu 31, 400083 Cluj-Napoca, Romania
Mircea Botez: Department of Structural Mechanics, School of Civil Engineering, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
Stefan Marius Buru: Department of Structural Mechanics, School of Civil Engineering, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania

IJERPH, 2023, vol. 20, issue 2, 1-16

Abstract: This study examines 0.6 N–4.8 N as the maximum orthodontic force to be applied to dental pulp and apical NVB on intact and 1–8 mm reduced periodontal-ligament (PDL), in connection with movement and ischemic, necrotic and resorptive risk. In addition, it examines whether the Tresca finite-element-analysis (FEA) criterion is more adequate for the examination of dental pulp and its apical NVB. Eighty-one (nine patients, with nine models for each patient) anatomically correct models of the periodontium, with the second lower-premolar reconstructed with its apical NVB and dental pulp were assembled, based on X-ray CBCT (cone-beam-computed-tomography) examinations and subjected to 0.6 N, 1.2 N, 2.4 N and 4.8 N of intrusion, extrusion, translation, rotation, and tipping. The Tresca failure criterion was applied, and the shear stress was assessed. Forces of 0.6 N, 1.2 N, and 2.4 N had negligible effects on apical NVB and dental pulp up to 8 mm of periodontal breakdown. A force of 4.8 N was safely applied to apical NVB on the intact periodontium only. Rotation and tipping seemed to be the most invasive movements for the apical NVB. For the dental pulp, only the translation and rotation movements seemed to display a particular risk of ischemia, necrosis, and internal orthodontic-resorption for both coronal (0–8 mm of loss) and radicular pulp (4–8 mm of loss), despite the amount of stress being lower than the MHP. The Tresca failure criterion seems more suitable than other criteria for apical NVB and dental pulp.

Keywords: dental pulp; apical neuro-vascular bundle; periodontal-ligament breakdown; physiological hydrostatic-pressure; finite element analysis; orthodontic movements; maximum orthodontic force (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/20/2/1179/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/2/1179/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:2:p:1179-:d:1030128

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:1179-:d:1030128