Preparation and Electrochemical Performance of Bio-Oil-Derived Hydrochar as a Supercapacitor Electrode Material
Juntao Wei,
Jiawei Sun,
Deliang Xu (),
Lei Shi,
Miao Wang,
Bin Li,
Xudong Song,
Shu Zhang () and
Hong Zhang
Additional contact information
Juntao Wei: Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Jiawei Sun: Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Deliang Xu: Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Lei Shi: Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Miao Wang: Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Bin Li: School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
Xudong Song: State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
Shu Zhang: Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Hong Zhang: Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
IJERPH, 2023, vol. 20, issue 2, 1-12
Abstract:
The rapid consumption of fossil energy and the urgent demand for sustainable development have significantly promoted worldwide efforts to explore new technology for energy conversion and storage. Carbon-based supercapacitors have received increasing attention. The use of biomass and waste as a carbon precursor is environmentally friendly and economical. In this study, hydrothermal pretreatment was used to synthetize coke from bio-oil, which can create a honeycomb-like structure that is advantageous for electrolyte transport. Furthermore, hydrothermal pretreatment, which is low in temperature, can create a low graphitization degree which can make heteroatom introduction and activation easier. Then, urea and KOH were used for doping and activation, which can improve conductivity and capacitance. Compared with no heteroatom and activation hydrothermal char (HC) (58.3 F/g at 1 A/g), the prepared carbon material nitrogen doping activated hydrothermal carbon (NAHC 1 ) had a good electrochemical performance of 225.4 F/g at 1 A/g. The specific capacitance of the prepared NAHC 1 was improved by 3.8 times compared with that of HC.
Keywords: hydrothermal; nitrogen doping; KOH activation; bio-oil; electrochemical performance (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/20/2/1355/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/2/1355/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:2:p:1355-:d:1032716
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().