High Adsorption of Hazardous Cr(VI) from Water Using a Biofilter Composed of Native Pseudomonas koreensis on Alginate Beads
Lourdes Diaz-Jimenez,
Sandy Garcia-Torres and
Salvador Carlos-Hernandez ()
Additional contact information
Lourdes Diaz-Jimenez: Sustentabilidad de los Recursos Naturales y Energía, Centro de Investigación y de Estudios Avanzados Unidad Saltillo, Ramos Arizpe 25900, Mexico
Sandy Garcia-Torres: Sustentabilidad de los Recursos Naturales y Energía, Centro de Investigación y de Estudios Avanzados Unidad Saltillo, Ramos Arizpe 25900, Mexico
Salvador Carlos-Hernandez: Sustentabilidad de los Recursos Naturales y Energía, Centro de Investigación y de Estudios Avanzados Unidad Saltillo, Ramos Arizpe 25900, Mexico
IJERPH, 2023, vol. 20, issue 2, 1-17
Abstract:
Most conventional methods to remove heavy metals from water are efficient for high concentrations, but they are expensive, produce secondary pollution, and cannot remove low concentrations. This paper proposes a biological system to remove Cr(VI) from aqueous solutions; the biofilter is composed of a native Pseudomonas koreensis immobilized in calcium alginate beads. Lab experiments were conducted in batch reactors, considering different operating conditions: Cr(VI) concentration, temperature, pH, and time. At 30 °C and a pH of 6.6, the immobilized bacteria achieved their optimal adsorption capacity. In the chromium adsorption system, saturation was reached at 30 h with a q max = 625 mg g −1 . By adjusting the experimental data to the Langmuir and Freundlich models, it is suggested that P. koreensis forms a biofilm with a homogeneous surface where Cr(VI) is adsorbed and that the bacteria also incorporates the metal in its metabolism, leading to a multilayer adsorption. On the other hand, using Fourier transform infrared spectroscopy, it was inferred that the functional groups involved in the adsorption process were O-H and C=O, which are a part of the P. koreensis cell wall.
Keywords: biosorption; biofilm; heavy metals; bacteria immobilization; water purification; P. koreensis (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/20/2/1385/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/2/1385/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:2:p:1385-:d:1033255
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().