EconPapers    
Economics at your fingertips  
 

Investigating the Potential of Transparent Parallel-Arranged Micro-Perforated Panels (MPPs) as Sound Absorbers in Classrooms

Ela Fasllija () and Semiha Yilmazer
Additional contact information
Ela Fasllija: Department of Interior Architecture and Environmental Design, Faculty of Art, Design and Architecture, Bilkent University, Ankara 06800, Turkey
Semiha Yilmazer: Department of Interior Architecture and Environmental Design, Faculty of Art, Design and Architecture, Bilkent University, Ankara 06800, Turkey

IJERPH, 2023, vol. 20, issue 2, 1-18

Abstract: Acoustic deficiencies due to lack of absorption in indoor spaces may sometime render significant buildings unfit for their purpose, especially the ones used as speech auditoria. This study investigates the potential of designing wideband acoustic absorbers composed of parallel-arranged micro-perforated panels (MPPs), known as efficient absorbers that do not need any other fibrous/porous material to have a high absorptive performance. It aims to integrate architectural trends such as transparency and the use of raw materials with acoustical constraints to ensure optimal indoor acoustic conditions. It proposes a structure composed of four parallel-arranged MPPs, which have been theoretically modelled using the electrical Equivalent Circuit Model (ECM) and implemented on an acrylic prototype using recent techniques such as CNC machining tools. The resulting samples are experimentally analysed for their absorption efficiency through the ISO-10534-2 method in an impedance tube. The results show that the prediction model and the experimental data are in good agreement. Afterward, the investigation focuses on applying the most absorptive MPP structure in a classroom without acoustic treatment through numerical simulations in ODEON 16 Acoustics Software. When the proposed material is installed as a wall panel, the results show an improvement toward optimum values in Reverberation Time (RT30) and Speech Transmission Index (STI).

Keywords: acoustic comfort; reverberation time; speech intelligibility; sound-absorbing materials; resonators; micro-perforated panels (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/20/2/1445/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/2/1445/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:2:p:1445-:d:1034324

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:1445-:d:1034324