EconPapers    
Economics at your fingertips  
 

Application of Natural Language Processing (NLP) in Detecting and Preventing Suicide Ideation: A Systematic Review

Abayomi Arowosegbe () and Tope Oyelade
Additional contact information
Abayomi Arowosegbe: Institute of Health Informatics, University College London, London NW1 2DA, UK
Tope Oyelade: Division of Medicine, University College London, London NW3 2PF, UK

IJERPH, 2023, vol. 20, issue 2, 1-23

Abstract: (1) Introduction: Around a million people are reported to die by suicide every year, and due to the stigma associated with the nature of the death, this figure is usually assumed to be an underestimate. Machine learning and artificial intelligence such as natural language processing has the potential to become a major technique for the detection, diagnosis, and treatment of people. (2) Methods: PubMed, EMBASE, MEDLINE, PsycInfo, and Global Health databases were searched for studies that reported use of NLP for suicide ideation or self-harm. (3) Result: The preliminary search of 5 databases generated 387 results. Removal of duplicates resulted in 158 potentially suitable studies. Twenty papers were finally included in this review. (4) Discussion: Studies show that combining structured and unstructured data in NLP data modelling yielded more accurate results than utilizing either alone. Additionally, to reduce suicides, people with mental problems must be continuously and passively monitored. (5) Conclusions: The use of AI&ML opens new avenues for considerably guiding risk prediction and advancing suicide prevention frameworks. The review’s analysis of the included research revealed that the use of NLP may result in low-cost and effective alternatives to existing resource-intensive methods of suicide prevention.

Keywords: natural language processing; NLP; text mining; suicide prevention; suicide-ideation; mental health (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/20/2/1514/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/2/1514/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:2:p:1514-:d:1035503

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:1514-:d:1035503