Integrated Evaluation of the Aeroacoustics and Psychoacoustics of a Single Propeller
Jianwei Sun,
Koichi Yonezawa,
Eiji Shima and
Hao Liu ()
Additional contact information
Jianwei Sun: Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
Koichi Yonezawa: Central Research Institute of Electrical Power Industry, Abiko 270-1194, Japan
Eiji Shima: Japan Aerospace Exploration Agency, Tokyo 181-0015, Japan
Hao Liu: Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
IJERPH, 2023, vol. 20, issue 3, 1-23
Abstract:
Aeroacoustic noise in multiple rotor drones has been increasingly recognized as a crucial issue, while noise reduction is normally associated with a trade-off between aerodynamic performance and sound suppression as well as sound quality improvement. Here, we propose an integrated methodology to evaluate both aeroacoustics and psychoacoustics of a single propeller. For a loop-type propeller, an experimental investigation was conducted in association with its aerodynamic and acoustic characteristics via a hover stand test in an anechoic chamber; the psychoacoustic performance was then examined with psychoacoustic annoyance models to evaluate five psychoacoustic metrics comprising loudness, fluctuation strength, roughness, sharpness, and tonality. A comparison of the figure of merit (FM), the overall sound pressure level (OASPL) and psychoacoustic metrics was undertaken among a two-blade propeller, a four-blade propeller, the loop-type propeller, a wide chord loop-type propeller, and a DJI Phantom III propeller, indicating that the loop-type propeller enables a remarkable reduction in OASPL and a noticeable improvement in sound quality while achieving comparable aerodynamic performance. Furthermore, the psychoacoustic analysis demonstrates that the loop-type propeller can improve the psychological response to various noises in terms of the higher-level broadband and lower-level tonal noise components. It is thus verified that the integrated evaluation methodology of aeroacoustics and psychoacoustics can be a useful tool in the design of low-noise propellers in association with multirotor drones.
Keywords: loop-type propeller; aerodynamic noise; psychoacoustic; broadband noise; tonal noise (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/20/3/1955/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/3/1955/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:3:p:1955-:d:1042671
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().