EconPapers    
Economics at your fingertips  
 

Initial Studies on the Effect of the Rice–Duck–Crayfish Ecological Co-Culture System on Physical, Chemical, and Microbiological Properties of Soils: A Field Case Study in Chaohu Lake Basin, Southeast China

Jun Yan, Jingwei Yu, Wei Huang, Xiaoxue Pan, Yucheng Li (), Shunyao Li, Yalu Tao, Kang Zhang and Xuesheng Zhang
Additional contact information
Jun Yan: School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
Jingwei Yu: School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
Wei Huang: School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
Xiaoxue Pan: School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
Yucheng Li: School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
Shunyao Li: School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
Yalu Tao: School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
Kang Zhang: School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
Xuesheng Zhang: School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China

IJERPH, 2023, vol. 20, issue 3, 1-19

Abstract: Rice–duck and rice–crayfish co-culture patterns can increase soil productivity and sustainability and reduce the use of chemical pesticides and fertilizers, thereby reducing the resulting negative environmental impacts. However, most studies have focused on the rice–duck and rice–crayfish binary patterns and have ignored integrated systems (three or more), which may have unexpected synergistic effects. To test these effects, a paddy field experiment was carried out in the Chaohu Lake Basin, Hefei city, Southeast China. Four groups, including a rice–duck–crayfish ecological co-culture system (RDC), idle field (CK), single-season rice planting system (SSR), and double-season rice planting system (DSR), were established in this study. The results showed that the RDC improved the soil physical properties, fertility, humus content, and enzyme activity. In the RDC system, the soil total nitrogen content ranged from 8.54% to 28.37% higher than other systems in the 0-10 cm soil layer. Similar increases were found for soil total phosphorus (8.22–30.53%), available nitrogen (6.93–22.72%), organic matter (18.24–41.54%), urease activity (16.67–71.51%), and acid phosphatase activity (23.41–66.20%). Relative to the SSR treatment, the RDC treatment reduced the total losses of nitrogen and phosphorus runoff by 24.30% and 10.29%, respectively. The RDC also did not cause any harm to the soil in terms of heavy metal pollution. Furthermore, the RDC improved the yield and quality of rice, farmer incomes, and eco-environmental profits. In general, the RDC can serve as a valuable method for the management of agricultural nonpoint-source pollution in the Chaohu Lake area and the revitalization of the countryside.

Keywords: rice–duck–crayfish co-culture; soil quality; nitrogen and phosphorus losses; heavy metals; eco-environmental profits (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/20/3/2006/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/3/2006/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:3:p:2006-:d:1043624

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2006-:d:1043624