Bayesian Hierarchical Framework from Expert Elicitation in the South African Coal Mining Industry for Compliance Testing
Felix Made (),
Ngianga-Bakwin Kandala and
Derk Brouwer
Additional contact information
Felix Made: School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
Ngianga-Bakwin Kandala: School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
Derk Brouwer: School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
IJERPH, 2023, vol. 20, issue 3, 1-15
Abstract:
Occupational exposure assessment is important in preventing occupational coal worker’s diseases. Methods have been proposed to assess compliance with exposure limits which aim to protect workers from developing diseases. A Bayesian framework with informative prior distribution obtained from historical or expert judgements has been highly recommended for compliance testing. The compliance testing is assessed against the occupational exposure limits (OEL) and categorization of the exposure, ranging from very highly controlled to very poorly controlled exposure groups. This study used a Bayesian framework from historical and expert elicitation data to compare the posterior probabilities of the 95th percentile (P95) of the coal dust exposures to improve compliance assessment and decision-making. A total of 10 job titles were included in this study. Bayesian framework with Markov chain Monte Carlo (MCMC) simulation was used to draw a full posterior probability of finding a job title to an exposure category. A modified IDEA (“Investigate”, “Discuss”, “Estimate”, and “Aggregate”) technique was used to conduct expert elicitation. The experts were asked to give their subjective probabilities of finding coal dust exposure of a job title in each of the exposure categories. Sensitivity analysis was done for parameter space to check for misclassification of exposures. There were more than 98% probabilities of the P95 exposure being found in the poorly controlled exposure group when using expert judgments. Historical data and non-informative prior tend to show a lower probability of finding the P95 in higher exposure categories in some titles unlike expert judgments. Expert judgements tend to show some similarity in findings with historical data. We recommend the use of expert judgements in occupational risk assessment as prior information before a decision is made on current exposure when historical data are unavailable or scarce.
Keywords: expert judgments; expert elicitation; exposure control categories; the 95th percentile; historical data (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/20/3/2496/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/3/2496/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:3:p:2496-:d:1052057
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().