EconPapers    
Economics at your fingertips  
 

Preparation and Coagulation Performance of Polyaluminum Lanthanum Silicate Coagulant

Jie He, Qixuan Song () and Jian He ()
Additional contact information
Jie He: Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
Qixuan Song: School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing 210023, China
Jian He: Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China

IJERPH, 2023, vol. 20, issue 4, 1-15

Abstract: In order to address the growing problem of water pollution caused by the excessive discharge of contaminants and provide a better aquatic ecosystem for the public, increasing attention has been paid to the harmlessness and efficiency of coagulation. In this study, polyaluminum lanthanum silicate (PALS) was synthesized through co-polymerization as a novel coagulant to treat wastewater. FTIR, XRD, and SEM were used to analyze the morphology and structure of the material, which further confirmed that the PALS was successfully synthesized. The results indicated that PALS had a great performance in the treatment of a kaolin–humic acid suspension under the optimal synthesis conditions with Al/Si = 3, La/Si = 0.1, and basicity = 0.7. Compared with conventional coagulants, PALS exhibited a better performance at a low coagulant dose and could achieve a good removal effect for an ultraviolet wavelength less than 254 nm (UV 254 ) (83.87%), residual turbidity (0.49 NTU), and dissolved organic carbon (DOC) (69.57%) at the optimal conditions. Additionally, the PALS showed a better effect on phosphate removal than other coagulants did, where the removal efficiency could reach 99.60%. Charge neutralization and adsorption bridging were the potential wastewater treatment mechanisms employed by the PALS, which showed varied contributions under different pH levels. The results indicated that PALS can be a promising coagulant in water treatment.

Keywords: coagulant; water treatment; phosphate adsorption; polymer bridging (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/20/4/2793/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/4/2793/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:4:p:2793-:d:1058086

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:2793-:d:1058086