Multiple Evaluations of the Spatial and Temporal Characteristics of Surface Water Quality in the Typical Area of the Yangtze River Delta of China Using the Water Quality Index and Multivariate Statistical Analysis: A Case Study in Shengzhou City
Yang Liu and
Lijuan Li ()
Additional contact information
Yang Liu: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Lijuan Li: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
IJERPH, 2023, vol. 20, issue 4, 1-22
Abstract:
Surface water assessments are of critical importance for balancing economic development with the ecological environment in rapidly developing regions. In this research, Shengzhou City, a typical town in the Yangtze River Delta region of China, was chosen to conduct a surface water quality study. As a region with a well-developed water system, monthly water quality monitoring data from eight sampling sites on the major tributaries and the mainstream were selected for six consecutive years from 2013 to 2018, containing seven important water quality indicators (pH, DO, COD Mn , COD Cr , BOD, NH 4 + -N, and TP). The comprehensive evaluation method based on the water quality index (WQI) and multivariate statistical analysis methods of cluster analysis (CA) and principal component analysis (PCA) were applied to explore the spatial and temporal changes of water quality in Shengzhou City. The main findings are as follows: (1) spatially, for three main tributaries, Xinchang River had the worst water quality, followed by Changle River, while Huangze River had the best. The water quality of the tributaries had higher volatility than the mainstream. (2) The sampling sites with similar locations had similar water quality characteristics. (3) Seasonally, for the four indicators of DO, COD Mn , COD Cr , and BOD, the water quality was better in the dry season while, for NH 4 + -N and TP, water quality was better in the wet season. The low WQI points were more likely to appear in the wet season. (4) The results of WQI assessment showed an improving trend in water quality. (5) Nitrogenous substances and organic matter were the key pollutants in this area. The research results prove that water quality evaluation methods and multivariate statistical methods are effective for the study of regional surface water quality.
Keywords: Yangtze River Delta; water quality; water quality index; multivariate statistical analysis (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/20/4/2883/pdf (application/pdf)
https://www.mdpi.com/1660-4601/20/4/2883/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:20:y:2023:i:4:p:2883-:d:1060073
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().